Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsoexmid | Unicode version |
Description: Weak linearity of ordinals implies the law of the excluded middle (that is, decidability of an arbitrary proposition). (Contributed by Mario Carneiro and Jim Kingdon, 29-Jan-2019.) |
Ref | Expression |
---|---|
ordsoexmid.1 |
Ref | Expression |
---|---|
ordsoexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtriexmidlem 4245 | . . . . 5 | |
2 | 1 | elexi 2567 | . . . 4 |
3 | 2 | sucid 4154 | . . 3 |
4 | 1 | onsuci 4242 | . . . 4 |
5 | suc0 4148 | . . . . 5 | |
6 | 0elon 4129 | . . . . . 6 | |
7 | 6 | onsuci 4242 | . . . . 5 |
8 | 5, 7 | eqeltrri 2111 | . . . 4 |
9 | eleq1 2100 | . . . . . . 7 | |
10 | 9 | 3anbi1d 1211 | . . . . . 6 |
11 | eleq1 2100 | . . . . . . 7 | |
12 | eleq1 2100 | . . . . . . . 8 | |
13 | 12 | orbi1d 705 | . . . . . . 7 |
14 | 11, 13 | imbi12d 223 | . . . . . 6 |
15 | 10, 14 | imbi12d 223 | . . . . 5 |
16 | 4 | elexi 2567 | . . . . . 6 |
17 | eleq1 2100 | . . . . . . . 8 | |
18 | 17 | 3anbi2d 1212 | . . . . . . 7 |
19 | eleq2 2101 | . . . . . . . 8 | |
20 | eleq2 2101 | . . . . . . . . 9 | |
21 | 20 | orbi2d 704 | . . . . . . . 8 |
22 | 19, 21 | imbi12d 223 | . . . . . . 7 |
23 | 18, 22 | imbi12d 223 | . . . . . 6 |
24 | p0ex 3939 | . . . . . . 7 | |
25 | eleq1 2100 | . . . . . . . . 9 | |
26 | 25 | 3anbi3d 1213 | . . . . . . . 8 |
27 | eleq2 2101 | . . . . . . . . . 10 | |
28 | eleq1 2100 | . . . . . . . . . 10 | |
29 | 27, 28 | orbi12d 707 | . . . . . . . . 9 |
30 | 29 | imbi2d 219 | . . . . . . . 8 |
31 | 26, 30 | imbi12d 223 | . . . . . . 7 |
32 | ordsoexmid.1 | . . . . . . . . . . 11 | |
33 | df-iso 4034 | . . . . . . . . . . 11 | |
34 | 32, 33 | mpbi 133 | . . . . . . . . . 10 |
35 | 34 | simpri 106 | . . . . . . . . 9 |
36 | epel 4029 | . . . . . . . . . . . 12 | |
37 | epel 4029 | . . . . . . . . . . . . 13 | |
38 | epel 4029 | . . . . . . . . . . . . 13 | |
39 | 37, 38 | orbi12i 681 | . . . . . . . . . . . 12 |
40 | 36, 39 | imbi12i 228 | . . . . . . . . . . 11 |
41 | 40 | 2ralbii 2332 | . . . . . . . . . 10 |
42 | 41 | ralbii 2330 | . . . . . . . . 9 |
43 | 35, 42 | mpbi 133 | . . . . . . . 8 |
44 | 43 | rspec3 2409 | . . . . . . 7 |
45 | 24, 31, 44 | vtocl 2608 | . . . . . 6 |
46 | 16, 23, 45 | vtocl 2608 | . . . . 5 |
47 | 2, 15, 46 | vtocl 2608 | . . . 4 |
48 | 1, 4, 8, 47 | mp3an 1232 | . . 3 |
49 | 2 | elsn 3391 | . . . . 5 |
50 | ordtriexmidlem2 4246 | . . . . 5 | |
51 | 49, 50 | sylbi 114 | . . . 4 |
52 | elirr 4266 | . . . . . . 7 | |
53 | elrabi 2695 | . . . . . . 7 | |
54 | 52, 53 | mto 588 | . . . . . 6 |
55 | elsuci 4140 | . . . . . . 7 | |
56 | 55 | ord 643 | . . . . . 6 |
57 | 54, 56 | mpi 15 | . . . . 5 |
58 | 0ex 3884 | . . . . . . 7 | |
59 | biidd 161 | . . . . . . 7 | |
60 | 58, 59 | rabsnt 3445 | . . . . . 6 |
61 | 60 | eqcoms 2043 | . . . . 5 |
62 | 57, 61 | syl 14 | . . . 4 |
63 | 51, 62 | orim12i 676 | . . 3 |
64 | 3, 48, 63 | mp2b 8 | . 2 |
65 | orcom 647 | . 2 | |
66 | 64, 65 | mpbi 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wo 629 w3a 885 wceq 1243 wcel 1393 wral 2306 crab 2310 c0 3224 csn 3375 class class class wbr 3764 cep 4024 wpo 4031 wor 4032 con0 4100 csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-tr 3855 df-eprel 4026 df-iso 4034 df-iord 4103 df-on 4105 df-suc 4108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |