Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0xp | Unicode version |
Description: The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
0xp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp 4362 | . . 3 | |
2 | noel 3228 | . . . . . . 7 | |
3 | simprl 483 | . . . . . . 7 | |
4 | 2, 3 | mto 588 | . . . . . 6 |
5 | 4 | nex 1389 | . . . . 5 |
6 | 5 | nex 1389 | . . . 4 |
7 | noel 3228 | . . . 4 | |
8 | 6, 7 | 2false 617 | . . 3 |
9 | 1, 8 | bitri 173 | . 2 |
10 | 9 | eqriv 2037 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wceq 1243 wex 1381 wcel 1393 c0 3224 cop 3378 cxp 4343 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-opab 3819 df-xp 4351 |
This theorem is referenced by: res0 4616 xp0 4743 xpeq0r 4746 xpdisj1 4747 xpima1 4767 |
Copyright terms: Public domain | W3C validator |