ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbxpg Structured version   Unicode version

Theorem csbxpg 4364
Description: Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbxpg  D  [_  ]_  X.  C  [_  ]_  X.  [_  ]_ C

Proof of Theorem csbxpg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 2901 . . 3  D  [_  ]_ {  |  <. ,  >.  C }  {  |  [.  ].  <. ,  >.  C }
2 sbcexg 2807 . . . . 5  D  [.  ].  <. ,  >.  C  [.  ].  <. ,  >.  C
3 sbcexg 2807 . . . . . . 7  D  [.  ]. 
<. ,  >.  C  [.  ].  <. ,  >.  C
4 sbcang 2800 . . . . . . . . 9  D  [.  ].  <. ,  >.  C  [.  ].  <. ,  >.  [.  ].  C
5 sbcg 2821 . . . . . . . . . 10  D  [.  ].  <. ,  >.  <. ,  >.
6 sbcang 2800 . . . . . . . . . . 11  D  [.  ].  C  [.  ].  [.  ].  C
7 sbcel2g 2865 . . . . . . . . . . . 12  D  [.  ]. 
[_  ]_
8 sbcel2g 2865 . . . . . . . . . . . 12  D  [.  ].  C 
[_  ]_ C
97, 8anbi12d 442 . . . . . . . . . . 11  D  [.  ].  [.  ].  C  [_  ]_  [_  ]_ C
106, 9bitrd 177 . . . . . . . . . 10  D  [.  ].  C  [_  ]_  [_  ]_ C
115, 10anbi12d 442 . . . . . . . . 9  D  [.  ].  <. ,  >.  [.  ].  C  <. , 
>. 
[_  ]_ 
[_  ]_ C
124, 11bitrd 177 . . . . . . . 8  D  [.  ].  <. ,  >.  C  <. ,  >.  [_  ]_  [_  ]_ C
1312exbidv 1703 . . . . . . 7  D  [.  ]. 
<. ,  >.  C  <. ,  >.  [_  ]_  [_  ]_ C
143, 13bitrd 177 . . . . . 6  D  [.  ]. 
<. ,  >.  C  <. ,  >.  [_  ]_  [_  ]_ C
1514exbidv 1703 . . . . 5  D  [.  ].  <. ,  >.  C  <. ,  >.  [_  ]_  [_  ]_ C
162, 15bitrd 177 . . . 4  D  [.  ].  <. ,  >.  C  <. ,  >.  [_  ]_  [_  ]_ C
1716abbidv 2152 . . 3  D  {  |  [.  ].  <. ,  >.  C }  {  | 
<. ,  >.  [_  ]_  [_  ]_ C }
181, 17eqtrd 2069 . 2  D  [_  ]_ {  |  <. ,  >.  C }  {  | 
<. ,  >.  [_  ]_  [_  ]_ C }
19 df-xp 4294 . . . 4  X.  C  { <. , 
>.  |  C }
20 df-opab 3810 . . . 4  { <. ,  >.  |  C }  {  |  <. ,  >.  C }
2119, 20eqtri 2057 . . 3  X.  C  {  |  <. , 
>.  C }
2221csbeq2i 2870 . 2  [_  ]_  X.  C 
[_  ]_ {  |  <. , 
>.  C }
23 df-xp 4294 . . 3  [_  ]_  X.  [_  ]_ C  { <. ,  >.  |  [_  ]_  [_  ]_ C }
24 df-opab 3810 . . 3  { <. ,  >.  |  [_  ]_  [_  ]_ C }  {  |  <. , 
>. 
[_  ]_ 
[_  ]_ C }
2523, 24eqtri 2057 . 2  [_  ]_  X.  [_  ]_ C  {  | 
<. ,  >.  [_  ]_  [_  ]_ C }
2618, 22, 253eqtr4g 2094 1  D  [_  ]_  X.  C  [_  ]_  X.  [_  ]_ C
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wceq 1242  wex 1378   wcel 1390   {cab 2023   [.wsbc 2758   [_csb 2846   <.cop 3370   {copab 3808    X. cxp 4286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-sbc 2759  df-csb 2847  df-opab 3810  df-xp 4294
This theorem is referenced by:  csbresg  4558
  Copyright terms: Public domain W3C validator