ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opbrop Unicode version

Theorem opbrop 4419
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
opbrop.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
Assertion
Ref Expression
opbrop  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Distinct variable groups:    x, y, z, w, v, u, A   
x, B, y, z, w, v, u    x, C, y, z, w, v, u    x, D, y, z, w, v, u   
x, S, y, z, w, v, u    ph, x, y    ps, z, w, v, u
Allowed substitution hints:    ph( z, w, v, u)    ps( x, y)    R( x, y, z, w, v, u)

Proof of Theorem opbrop
StepHypRef Expression
1 opbrop.1 . . . 4  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
21copsex4g 3984 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph )  <->  ps )
)
32anbi2d 437 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) )  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
4 elex 2566 . . . 4  |-  ( A  e.  S  ->  A  e.  _V )
5 elex 2566 . . . 4  |-  ( B  e.  S  ->  B  e.  _V )
6 opexgOLD 3965 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e. 
_V )
74, 5, 6syl2an 273 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e. 
_V )
8 elex 2566 . . . 4  |-  ( C  e.  S  ->  C  e.  _V )
9 elex 2566 . . . 4  |-  ( D  e.  S  ->  D  e.  _V )
10 opexgOLD 3965 . . . 4  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  e. 
_V )
118, 9, 10syl2an 273 . . 3  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e. 
_V )
12 eleq1 2100 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( S  X.  S
)  <->  <. A ,  B >.  e.  ( S  X.  S ) ) )
1312anbi1d 438 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) ) )
14 eqeq1 2046 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. z ,  w >.  <->  <. A ,  B >.  =  <. z ,  w >. )
)
1514anbi1d 438 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
1615anbi1d 438 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
17164exbidv 1750 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
1813, 17anbi12d 442 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
)  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) ) )
19 eleq1 2100 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( S  X.  S
)  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
2019anbi2d 437 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) ) )
21 eqeq1 2046 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. v ,  u >.  <->  <. C ,  D >.  =  <. v ,  u >. )
)
2221anbi2d 437 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )
) )
2322anbi1d 438 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph ) ) )
24234exbidv 1750 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  E. z E. w E. v E. u ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph )
) )
2520, 24anbi12d 442 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) )  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
26 opbrop.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
2718, 25, 26brabg 4006 . . 3  |-  ( (
<. A ,  B >.  e. 
_V  /\  <. C ,  D >.  e.  _V )  ->  ( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
287, 11, 27syl2an 273 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
29 opelxpi 4376 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
30 opelxpi 4376 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
3129, 30anim12i 321 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) )
3231biantrurd 289 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ps  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  ps ) ) )
333, 28, 323bitr4d 209 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   <.cop 3378   class class class wbr 3764   {copab 3817    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351
This theorem is referenced by:  ecopoveq  6201  oviec  6212
  Copyright terms: Public domain W3C validator