| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnre | Unicode version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 7005 |
. . . . . 6
| |
| 2 | 1 | uniex 4174 |
. . . . 5
|
| 3 | pwuninel2 5897 |
. . . . 5
| |
| 4 | 2, 3 | ax-mp 7 |
. . . 4
|
| 5 | df-pnf 7062 |
. . . . 5
| |
| 6 | 5 | eleq1i 2103 |
. . . 4
|
| 7 | 4, 6 | mtbir 596 |
. . 3
|
| 8 | recn 7014 |
. . 3
| |
| 9 | 7, 8 | mto 588 |
. 2
|
| 10 | 9 | nelir 2300 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-un 4170 ax-cnex 6975 ax-resscn 6976 |
| This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-nel 2207 df-rex 2312 df-rab 2315 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-uni 3581 df-pnf 7062 |
| This theorem is referenced by: renepnf 7073 xrltnr 8701 pnfnlt 8708 |
| Copyright terms: Public domain | W3C validator |