Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > acexmidlema | Unicode version |
Description: Lemma for acexmid 5511. (Contributed by Jim Kingdon, 6-Aug-2019.) |
Ref | Expression |
---|---|
acexmidlem.a | |
acexmidlem.b | |
acexmidlem.c |
Ref | Expression |
---|---|
acexmidlema |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acexmidlem.a | . . . 4 | |
2 | 1 | eleq2i 2104 | . . 3 |
3 | p0ex 3939 | . . . . 5 | |
4 | 3 | prid2 3477 | . . . 4 |
5 | eqeq1 2046 | . . . . . 6 | |
6 | 5 | orbi1d 705 | . . . . 5 |
7 | 6 | elrab3 2699 | . . . 4 |
8 | 4, 7 | ax-mp 7 | . . 3 |
9 | 2, 8 | bitri 173 | . 2 |
10 | noel 3228 | . . . 4 | |
11 | 0ex 3884 | . . . . . 6 | |
12 | 11 | snid 3402 | . . . . 5 |
13 | eleq2 2101 | . . . . 5 | |
14 | 12, 13 | mpbii 136 | . . . 4 |
15 | 10, 14 | mto 588 | . . 3 |
16 | orel1 644 | . . 3 | |
17 | 15, 16 | ax-mp 7 | . 2 |
18 | 9, 17 | sylbi 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 98 wo 629 wceq 1243 wcel 1393 crab 2310 c0 3224 csn 3375 cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 |
This theorem is referenced by: acexmidlem1 5508 |
Copyright terms: Public domain | W3C validator |