ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstr3i Unicode version

Theorem eqsstr3i 2976
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
Hypotheses
Ref Expression
eqsstr3.1  |-  B  =  A
eqsstr3.2  |-  B  C_  C
Assertion
Ref Expression
eqsstr3i  |-  A  C_  C

Proof of Theorem eqsstr3i
StepHypRef Expression
1 eqsstr3.1 . . 3  |-  B  =  A
21eqcomi 2044 . 2  |-  A  =  B
3 eqsstr3.2 . 2  |-  B  C_  C
42, 3eqsstri 2975 1  |-  A  C_  C
Colors of variables: wff set class
Syntax hints:    = wceq 1243    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by:  inss2  3158  dmv  4551  resasplitss  5069  ofrfval  5720  fnofval  5721  ofrval  5722  off  5724  ofres  5725  ofco  5729  dftpos4  5878  smores2  5909
  Copyright terms: Public domain W3C validator