ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofrval Unicode version

Theorem ofrval 5722
Description: Exhibit a function relation at a point. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofrval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofrval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
Assertion
Ref Expression
ofrval  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )

Proof of Theorem ofrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . . 6  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . . 6  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . . 6  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . . 6  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . . 6  |-  ( A  i^i  B )  =  S
6 eqidd 2041 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2041 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7ofrfval 5720 . . . . 5  |-  ( ph  ->  ( F  oR R G  <->  A. x  e.  S  ( F `  x ) R ( G `  x ) ) )
98biimpa 280 . . . 4  |-  ( (
ph  /\  F  oR R G )  ->  A. x  e.  S  ( F `  x ) R ( G `  x ) )
10 fveq2 5178 . . . . . 6  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
11 fveq2 5178 . . . . . 6  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
1210, 11breq12d 3777 . . . . 5  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x )  <->  ( F `  X ) R ( G `  X ) ) )
1312rspccv 2653 . . . 4  |-  ( A. x  e.  S  ( F `  x ) R ( G `  x )  ->  ( X  e.  S  ->  ( F `  X ) R ( G `  X ) ) )
149, 13syl 14 . . 3  |-  ( (
ph  /\  F  oR R G )  ->  ( X  e.  S  ->  ( F `  X ) R ( G `  X ) ) )
15143impia 1101 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( F `  X
) R ( G `
 X ) )
16 simp1 904 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ph )
17 inss1 3157 . . . . 5  |-  ( A  i^i  B )  C_  A
185, 17eqsstr3i 2976 . . . 4  |-  S  C_  A
19 simp3 906 . . . 4  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  S )
2018, 19sseldi 2943 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  A )
21 ofrval.6 . . 3  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2216, 20, 21syl2anc 391 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( F `  X
)  =  C )
23 inss2 3158 . . . . 5  |-  ( A  i^i  B )  C_  B
245, 23eqsstr3i 2976 . . . 4  |-  S  C_  B
2524, 19sseldi 2943 . . 3  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  X  e.  B )
26 ofrval.7 . . 3  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2716, 25, 26syl2anc 391 . 2  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  ( G `  X
)  =  D )
2815, 22, 273brtr3d 3793 1  |-  ( (
ph  /\  F  oR R G  /\  X  e.  S )  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306    i^i cin 2916   class class class wbr 3764    Fn wfn 4897   ` cfv 4902    oRcofr 5711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ofr 5713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator