ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnofval Unicode version

Theorem fnofval 5721
Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
ofval.6  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
ofval.7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
ofval.8  |-  ( ph  ->  R  Fn  ( U  X.  V ) )
ofval.9  |-  ( ph  ->  C  e.  U )
ofval.10  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fnofval  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )

Proof of Theorem fnofval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . . 5  |-  ( ph  ->  F  Fn  A )
2 offval.2 . . . . 5  |-  ( ph  ->  G  Fn  B )
3 offval.3 . . . . 5  |-  ( ph  ->  A  e.  V )
4 offval.4 . . . . 5  |-  ( ph  ->  B  e.  W )
5 offval.5 . . . . 5  |-  ( A  i^i  B )  =  S
6 eqidd 2041 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( F `  x ) )
7 eqidd 2041 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  ( G `  x ) )
81, 2, 3, 4, 5, 6, 7offval 5719 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
98fveq1d 5180 . . 3  |-  ( ph  ->  ( ( F  oF R G ) `
 X )  =  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X ) )
109adantr 261 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
) )
11 simpr 103 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
12 ofval.8 . . . . 5  |-  ( ph  ->  R  Fn  ( U  X.  V ) )
1312adantr 261 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  R  Fn  ( U  X.  V
) )
14 ofval.9 . . . . . 6  |-  ( ph  ->  C  e.  U )
1514adantr 261 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  C  e.  U )
16 inss1 3157 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
175, 16eqsstr3i 2976 . . . . . . . 8  |-  S  C_  A
1817sseli 2941 . . . . . . 7  |-  ( X  e.  S  ->  X  e.  A )
19 ofval.6 . . . . . . 7  |-  ( (
ph  /\  X  e.  A )  ->  ( F `  X )  =  C )
2018, 19sylan2 270 . . . . . 6  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  =  C )
2120eleq1d 2106 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
)  e.  U  <->  C  e.  U ) )
2215, 21mpbird 156 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( F `  X )  e.  U )
23 ofval.10 . . . . . 6  |-  ( ph  ->  D  e.  V )
2423adantr 261 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  D  e.  V )
25 inss2 3158 . . . . . . . . 9  |-  ( A  i^i  B )  C_  B
265, 25eqsstr3i 2976 . . . . . . . 8  |-  S  C_  B
2726sseli 2941 . . . . . . 7  |-  ( X  e.  S  ->  X  e.  B )
28 ofval.7 . . . . . . 7  |-  ( (
ph  /\  X  e.  B )  ->  ( G `  X )  =  D )
2927, 28sylan2 270 . . . . . 6  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  =  D )
3029eleq1d 2106 . . . . 5  |-  ( (
ph  /\  X  e.  S )  ->  (
( G `  X
)  e.  V  <->  D  e.  V ) )
3124, 30mpbird 156 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  ( G `  X )  e.  V )
32 fnovex 5538 . . . 4  |-  ( ( R  Fn  ( U  X.  V )  /\  ( F `  X )  e.  U  /\  ( G `  X )  e.  V )  ->  (
( F `  X
) R ( G `
 X ) )  e.  _V )
3313, 22, 31, 32syl3anc 1135 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  e.  _V )
34 fveq2 5178 . . . . 5  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
35 fveq2 5178 . . . . 5  |-  ( x  =  X  ->  ( G `  x )  =  ( G `  X ) )
3634, 35oveq12d 5530 . . . 4  |-  ( x  =  X  ->  (
( F `  x
) R ( G `
 x ) )  =  ( ( F `
 X ) R ( G `  X
) ) )
37 eqid 2040 . . . 4  |-  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) )
3836, 37fvmptg 5248 . . 3  |-  ( ( X  e.  S  /\  ( ( F `  X ) R ( G `  X ) )  e.  _V )  ->  ( ( x  e.  S  |->  ( ( F `
 x ) R ( G `  x
) ) ) `  X )  =  ( ( F `  X
) R ( G `
 X ) ) )
3911, 33, 38syl2anc 391 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) `  X
)  =  ( ( F `  X ) R ( G `  X ) ) )
4020, 29oveq12d 5530 . 2  |-  ( (
ph  /\  X  e.  S )  ->  (
( F `  X
) R ( G `
 X ) )  =  ( C R D ) )
4110, 39, 403eqtrd 2076 1  |-  ( (
ph  /\  X  e.  S )  ->  (
( F  oF R G ) `  X )  =  ( C R D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557    i^i cin 2916    |-> cmpt 3818    X. cxp 4343    Fn wfn 4897   ` cfv 4902  (class class class)co 5512    oFcof 5710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-of 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator