ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval Unicode version

Theorem offval 5719
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1  |-  ( ph  ->  F  Fn  A )
offval.2  |-  ( ph  ->  G  Fn  B )
offval.3  |-  ( ph  ->  A  e.  V )
offval.4  |-  ( ph  ->  B  e.  W )
offval.5  |-  ( A  i^i  B )  =  S
offval.6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
offval.7  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
Assertion
Ref Expression
offval  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Distinct variable groups:    x, A    x, F    x, G    ph, x    x, S    x, R
Allowed substitution hints:    B( x)    C( x)    D( x)    V( x)    W( x)

Proof of Theorem offval
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4  |-  ( ph  ->  F  Fn  A )
2 offval.3 . . . 4  |-  ( ph  ->  A  e.  V )
3 fnex 5383 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  V )  ->  F  e.  _V )
41, 2, 3syl2anc 391 . . 3  |-  ( ph  ->  F  e.  _V )
5 offval.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 offval.4 . . . 4  |-  ( ph  ->  B  e.  W )
7 fnex 5383 . . . 4  |-  ( ( G  Fn  B  /\  B  e.  W )  ->  G  e.  _V )
85, 6, 7syl2anc 391 . . 3  |-  ( ph  ->  G  e.  _V )
9 fndm 4998 . . . . . . . 8  |-  ( F  Fn  A  ->  dom  F  =  A )
101, 9syl 14 . . . . . . 7  |-  ( ph  ->  dom  F  =  A )
11 fndm 4998 . . . . . . . 8  |-  ( G  Fn  B  ->  dom  G  =  B )
125, 11syl 14 . . . . . . 7  |-  ( ph  ->  dom  G  =  B )
1310, 12ineq12d 3139 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  ( A  i^i  B ) )
14 offval.5 . . . . . 6  |-  ( A  i^i  B )  =  S
1513, 14syl6eq 2088 . . . . 5  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  =  S )
1615mpteq1d 3842 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  =  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) ) )
17 inex1g 3893 . . . . . 6  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
1814, 17syl5eqelr 2125 . . . . 5  |-  ( A  e.  V  ->  S  e.  _V )
19 mptexg 5386 . . . . 5  |-  ( S  e.  _V  ->  (
x  e.  S  |->  ( ( F `  x
) R ( G `
 x ) ) )  e.  _V )
202, 18, 193syl 17 . . . 4  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )
2116, 20eqeltrd 2114 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  e. 
_V )
22 dmeq 4535 . . . . . 6  |-  ( f  =  F  ->  dom  f  =  dom  F )
23 dmeq 4535 . . . . . 6  |-  ( g  =  G  ->  dom  g  =  dom  G )
2422, 23ineqan12d 3140 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( dom  f  i^i 
dom  g )  =  ( dom  F  i^i  dom 
G ) )
25 fveq1 5177 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
26 fveq1 5177 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
2725, 26oveqan12d 5531 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) R ( g `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
2824, 27mpteq12dv 3839 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) R ( g `  x ) ) )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
29 df-of 5712 . . . 4  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
3028, 29ovmpt2ga 5630 . . 3  |-  ( ( F  e.  _V  /\  G  e.  _V  /\  (
x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  e.  _V )  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x ) R ( G `  x ) ) ) )
314, 8, 21, 30syl3anc 1135 . 2  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
3214eleq2i 2104 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  S
)
33 elin 3126 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3432, 33bitr3i 175 . . . 4  |-  ( x  e.  S  <->  ( x  e.  A  /\  x  e.  B ) )
35 offval.6 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  C )
3635adantrr 448 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( F `  x
)  =  C )
37 offval.7 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  ( G `  x )  =  D )
3837adantrl 447 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( G `  x
)  =  D )
3936, 38oveq12d 5530 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  x  e.  B ) )  -> 
( ( F `  x ) R ( G `  x ) )  =  ( C R D ) )
4034, 39sylan2b 271 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  (
( F `  x
) R ( G `
 x ) )  =  ( C R D ) )
4140mpteq2dva 3847 . 2  |-  ( ph  ->  ( x  e.  S  |->  ( ( F `  x ) R ( G `  x ) ) )  =  ( x  e.  S  |->  ( C R D ) ) )
4231, 16, 413eqtrd 2076 1  |-  ( ph  ->  ( F  oF R G )  =  ( x  e.  S  |->  ( C R D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   _Vcvv 2557    i^i cin 2916    |-> cmpt 3818   dom cdm 4345    Fn wfn 4897   ` cfv 4902  (class class class)co 5512    oFcof 5710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-of 5712
This theorem is referenced by:  fnofval  5721  off  5724  ofres  5725  offval2  5726  suppssof1  5728  ofco  5729  offveqb  5730
  Copyright terms: Public domain W3C validator