Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  abrexex Unicode version

Theorem abrexex 5686
 Description: Existence of a class abstraction of existentially restricted sets. is normally a free-variable parameter in the class expression substituted for , which can be thought of as . This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5329, funex 5327, fnex 5326, resfunexg 5325, and funimaexg 4926. See also abrexex2 5693. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
abrexex.1
Assertion
Ref Expression
abrexex
Distinct variable groups:   ,,   ,
Allowed substitution hint:   ()

Proof of Theorem abrexex
StepHypRef Expression
1 eqid 2037 . . 3
21rnmpt 4525 . 2
3 abrexex.1 . . . 4
43mptex 5330 . . 3
54rnex 4542 . 2
62, 5eqeltrri 2108 1
 Colors of variables: wff set class Syntax hints:   wceq 1242   wcel 1390  cab 2023  wrex 2301  cvv 2551   cmpt 3809   crn 4289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853 This theorem is referenced by:  ab2rexex  5700
 Copyright terms: Public domain W3C validator