Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abrexex | Unicode version |
Description: Existence of a class abstraction of existentially restricted sets. is normally a free-variable parameter in the class expression substituted for , which can be thought of as . This simple-looking theorem is actually quite powerful and appears to involve the Axiom of Replacement in an intrinsic way, as can be seen by tracing back through the path mptexg 5386, funex 5384, fnex 5383, resfunexg 5382, and funimaexg 4983. See also abrexex2 5751. (Contributed by NM, 16-Oct-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
abrexex.1 |
Ref | Expression |
---|---|
abrexex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . . 3 | |
2 | 1 | rnmpt 4582 | . 2 |
3 | abrexex.1 | . . . 4 | |
4 | 3 | mptex 5387 | . . 3 |
5 | 4 | rnex 4599 | . 2 |
6 | 2, 5 | eqeltrri 2111 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1243 wcel 1393 cab 2026 wrex 2307 cvv 2557 cmpt 3818 crn 4346 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 |
This theorem is referenced by: ab2rexex 5758 shftfval 9422 |
Copyright terms: Public domain | W3C validator |