ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexg Unicode version

Theorem resfunexg 5382
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. (Contributed by NM, 7-Apr-1995.) (Revised by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
resfunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 4941 . . . . 5  |-  ( Fun 
A  ->  Fun  ( A  |`  B ) )
2 funfvex 5192 . . . . . 6  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  -> 
( ( A  |`  B ) `  x
)  e.  _V )
32ralrimiva 2392 . . . . 5  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x
)  e.  _V )
4 fnasrng 5343 . . . . 5  |-  ( A. x  e.  dom  ( A  |`  B ) ( ( A  |`  B ) `  x )  e.  _V  ->  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) )  =  ran  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) )
51, 3, 43syl 17 . . . 4  |-  ( Fun 
A  ->  ( x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `  x ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
65adantr 261 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
x  e.  dom  ( A  |`  B )  |->  ( ( A  |`  B ) `
 x ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
71adantr 261 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  Fun  ( A  |`  B ) )
8 funfn 4931 . . . . 5  |-  ( Fun  ( A  |`  B )  <-> 
( A  |`  B )  Fn  dom  ( A  |`  B ) )
97, 8sylib 127 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  Fn 
dom  ( A  |`  B ) )
10 dffn5im 5219 . . . 4  |-  ( ( A  |`  B )  Fn  dom  ( A  |`  B )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
119, 10syl 14 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( x  e.  dom  ( A  |`  B ) 
|->  ( ( A  |`  B ) `  x
) ) )
12 imadmrn 4678 . . . . 5  |-  ( ( x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )
13 vex 2560 . . . . . . . . 9  |-  x  e. 
_V
14 opexgOLD 3965 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  ( ( A  |`  B ) `  x
)  e.  _V )  -> 
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1513, 2, 14sylancr 393 . . . . . . . 8  |-  ( ( Fun  ( A  |`  B )  /\  x  e.  dom  ( A  |`  B ) )  ->  <. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
1615ralrimiva 2392 . . . . . . 7  |-  ( Fun  ( A  |`  B )  ->  A. x  e.  dom  ( A  |`  B )
<. x ,  ( ( A  |`  B ) `  x ) >.  e.  _V )
17 dmmptg 4818 . . . . . . 7  |-  ( A. x  e.  dom  ( A  |`  B ) <. x ,  ( ( A  |`  B ) `  x
) >.  e.  _V  ->  dom  ( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
)  =  dom  ( A  |`  B ) )
181, 16, 173syl 17 . . . . . 6  |-  ( Fun 
A  ->  dom  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  =  dom  ( A  |`  B ) )
1918imaeq2d 4668 . . . . 5  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
2012, 19syl5reqr 2087 . . . 4  |-  ( Fun 
A  ->  ( (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. ) " dom  ( A  |`  B ) )  =  ran  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
2120adantr 261 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  =  ran  ( x  e.  dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) )
226, 11, 213eqtr4d 2082 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  =  ( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) ) )
23 funmpt 4938 . . 3  |-  Fun  (
x  e.  dom  ( A  |`  B )  |->  <.
x ,  ( ( A  |`  B ) `  x ) >. )
24 dmresexg 4634 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
2524adantl 262 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
26 funimaexg 4983 . . 3  |-  ( ( Fun  ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. )  /\  dom  ( A  |`  B )  e.  _V )  -> 
( ( x  e. 
dom  ( A  |`  B )  |->  <. x ,  ( ( A  |`  B ) `  x
) >. ) " dom  ( A  |`  B ) )  e.  _V )
2723, 25, 26sylancr 393 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  (
( x  e.  dom  ( A  |`  B ) 
|->  <. x ,  ( ( A  |`  B ) `
 x ) >.
) " dom  ( A  |`  B ) )  e.  _V )
2822, 27eqeltrd 2114 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557   <.cop 3378    |-> cmpt 3818   dom cdm 4345   ran crn 4346    |` cres 4347   "cima 4348   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  fnex  5383  ofexg  5716  cofunexg  5738  rdgivallem  5968  frecex  5981  frecsuclem3  5990
  Copyright terms: Public domain W3C validator