![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpidtr | GIF version |
Description: A square cross product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.) |
Ref | Expression |
---|---|
xpidtr | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brxp 4375 | . . . . . 6 ⊢ (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
2 | brxp 4375 | . . . . . . . . 9 ⊢ (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
3 | brxp 4375 | . . . . . . . . . . 11 ⊢ (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) | |
4 | 3 | simplbi2com 1333 | . . . . . . . . . 10 ⊢ (𝑧 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
5 | 4 | adantl 262 | . . . . . . . . 9 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
6 | 2, 5 | sylbi 114 | . . . . . . . 8 ⊢ (𝑦(𝐴 × 𝐴)𝑧 → (𝑥 ∈ 𝐴 → 𝑥(𝐴 × 𝐴)𝑧)) |
7 | 6 | com12 27 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
8 | 7 | adantr 261 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
9 | 1, 8 | sylbi 114 | . . . . 5 ⊢ (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧 → 𝑥(𝐴 × 𝐴)𝑧)) |
10 | 9 | imp 115 | . . . 4 ⊢ ((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
11 | 10 | ax-gen 1338 | . . 3 ⊢ ∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
12 | 11 | gen2 1339 | . 2 ⊢ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧) |
13 | cotr 4706 | . 2 ⊢ (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥∀𝑦∀𝑧((𝑥(𝐴 × 𝐴)𝑦 ∧ 𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)) | |
14 | 12, 13 | mpbir 134 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 ∈ wcel 1393 ⊆ wss 2917 class class class wbr 3764 × cxp 4343 ∘ ccom 4349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-co 4354 |
This theorem is referenced by: trinxp 4718 xpiderm 6177 |
Copyright terms: Public domain | W3C validator |