Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnmpt Structured version   GIF version

Theorem rnmpt 4525
 Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rnmpt.1 𝐹 = (x AB)
Assertion
Ref Expression
rnmpt ran 𝐹 = {yx A y = B}
Distinct variable groups:   y,A   y,B   x,y
Allowed substitution hints:   A(x)   B(x)   𝐹(x,y)

Proof of Theorem rnmpt
StepHypRef Expression
1 rnopab 4524 . 2 ran {⟨x, y⟩ ∣ (x A y = B)} = {yx(x A y = B)}
2 rnmpt.1 . . . 4 𝐹 = (x AB)
3 df-mpt 3811 . . . 4 (x AB) = {⟨x, y⟩ ∣ (x A y = B)}
42, 3eqtri 2057 . . 3 𝐹 = {⟨x, y⟩ ∣ (x A y = B)}
54rneqi 4505 . 2 ran 𝐹 = ran {⟨x, y⟩ ∣ (x A y = B)}
6 df-rex 2306 . . 3 (x A y = Bx(x A y = B))
76abbii 2150 . 2 {yx A y = B} = {yx(x A y = B)}
81, 5, 73eqtr4i 2067 1 ran 𝐹 = {yx A y = B}
 Colors of variables: wff set class Syntax hints:   ∧ wa 97   = wceq 1242  ∃wex 1378   ∈ wcel 1390  {cab 2023  ∃wrex 2301  {copab 3808   ↦ cmpt 3809  ran crn 4289 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-mpt 3811  df-cnv 4296  df-dm 4298  df-rn 4299 This theorem is referenced by:  elrnmpt  4526  elrnmpt1  4528  elrnmptg  4529  dfiun3g  4532  dfiin3g  4533  fnrnfv  5163  fmpt  5262  fnasrn  5284  fnasrng  5286  fliftf  5382  abrexex  5686  abrexexg  5687  fo1st  5726  fo2nd  5727  qliftf  6127
 Copyright terms: Public domain W3C validator