Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnfv Structured version   GIF version

Theorem fnrnfv 5145
 Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv (𝐹 Fn A → ran 𝐹 = {yx A y = (𝐹x)})
Distinct variable groups:   x,y,A   x,𝐹,y

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5im 5144 . . 3 (𝐹 Fn A𝐹 = (x A ↦ (𝐹x)))
21rneqd 4490 . 2 (𝐹 Fn A → ran 𝐹 = ran (x A ↦ (𝐹x)))
3 eqid 2022 . . 3 (x A ↦ (𝐹x)) = (x A ↦ (𝐹x))
43rnmpt 4509 . 2 ran (x A ↦ (𝐹x)) = {yx A y = (𝐹x)}
52, 4syl6eq 2070 1 (𝐹 Fn A → ran 𝐹 = {yx A y = (𝐹x)})
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1228  {cab 2008  ∃wrex 2285   ↦ cmpt 3792  ran crn 4273   Fn wfn 4824  ‘cfv 4829 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3849  ax-pow 3901  ax-pr 3918 This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-eu 1885  df-mo 1886  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-sbc 2742  df-un 2899  df-in 2901  df-ss 2908  df-pw 3336  df-sn 3356  df-pr 3357  df-op 3359  df-uni 3555  df-br 3739  df-opab 3793  df-mpt 3794  df-id 4004  df-xp 4278  df-rel 4279  df-cnv 4280  df-co 4281  df-dm 4282  df-rn 4283  df-iota 4794  df-fun 4831  df-fn 4832  df-fv 4837 This theorem is referenced by:  fvelrnb  5146  fniinfv  5156  dffo3  5239  fniunfv  5326  fnrnov  5569
 Copyright terms: Public domain W3C validator