ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex Structured version   GIF version

Theorem fnovex 5431
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) A 𝐶 B 𝐷) → (A𝐹B) V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5408 . 2 (A𝐹B) = (𝐹‘⟨A, B⟩)
2 opelxp 4267 . . . 4 (⟨A, B (𝐶 × 𝐷) ↔ (A 𝐶 B 𝐷))
3 funfvex 5084 . . . . 5 ((Fun 𝐹 A, B dom 𝐹) → (𝐹‘⟨A, B⟩) V)
43funfni 4892 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) A, B (𝐶 × 𝐷)) → (𝐹‘⟨A, B⟩) V)
52, 4sylan2br 272 . . 3 ((𝐹 Fn (𝐶 × 𝐷) (A 𝐶 B 𝐷)) → (𝐹‘⟨A, B⟩) V)
653impb 1088 . 2 ((𝐹 Fn (𝐶 × 𝐷) A 𝐶 B 𝐷) → (𝐹‘⟨A, B⟩) V)
71, 6syl5eqel 2106 1 ((𝐹 Fn (𝐶 × 𝐷) A 𝐶 B 𝐷) → (A𝐹B) V)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   w3a 875   wcel 1375  Vcvv 2533  cop 3330   × cxp 4236   Fn wfn 4791  cfv 4796  (class class class)co 5405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1315  ax-7 1316  ax-gen 1317  ax-ie1 1362  ax-ie2 1363  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2004  ax-sep 3827  ax-pow 3879  ax-pr 3896
This theorem depends on definitions:  df-bi 110  df-3an 877  df-tru 1231  df-nf 1329  df-sb 1628  df-eu 1884  df-mo 1885  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2287  df-rex 2288  df-v 2535  df-sbc 2740  df-un 2900  df-in 2902  df-ss 2909  df-pw 3313  df-sn 3333  df-pr 3334  df-op 3336  df-uni 3533  df-br 3717  df-opab 3771  df-id 3983  df-xp 4244  df-cnv 4246  df-co 4247  df-dm 4248  df-iota 4761  df-fun 4798  df-fn 4799  df-fv 4804  df-ov 5408
This theorem is referenced by:  ovelrn  5541  fnofval  5610
  Copyright terms: Public domain W3C validator