Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biidd | GIF version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd | ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 160 | . 2 ⊢ (𝜓 ↔ 𝜓) | |
2 | 1 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3anbi12d 1208 3anbi13d 1209 3anbi23d 1210 3anbi1d 1211 3anbi2d 1212 3anbi3d 1213 sb6x 1662 exdistrfor 1681 a16g 1744 rr19.3v 2682 rr19.28v 2683 euxfr2dc 2726 dfif3 3343 copsexg 3981 ordtriexmidlem2 4246 ordtriexmid 4247 ordtri2orexmid 4248 ontr2exmid 4250 ordtri2or2exmidlem 4251 onsucsssucexmid 4252 ordsoexmid 4286 0elsucexmid 4289 ordpwsucexmid 4294 ordtri2or2exmid 4296 riotabidv 5470 ov6g 5638 ovg 5639 dfxp3 5820 ssfiexmid 6336 diffitest 6344 ltsopi 6418 pitri3or 6420 creur 7911 creui 7912 |
Copyright terms: Public domain | W3C validator |