ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfif3 GIF version

Theorem dfif3 3343
Description: Alternate definition of the conditional operator df-if 3332. Note that 𝜑 is independent of 𝑥 i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.) (Revised by Mario Carneiro, 8-Sep-2013.)
Hypothesis
Ref Expression
dfif3.1 𝐶 = {𝑥𝜑}
Assertion
Ref Expression
dfif3 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dfif3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfif6 3333 . 2 if(𝜑, 𝐴, 𝐵) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
2 dfif3.1 . . . . . 6 𝐶 = {𝑥𝜑}
3 biidd 161 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜑))
43cbvabv 2161 . . . . . 6 {𝑥𝜑} = {𝑦𝜑}
52, 4eqtri 2060 . . . . 5 𝐶 = {𝑦𝜑}
65ineq2i 3135 . . . 4 (𝐴𝐶) = (𝐴 ∩ {𝑦𝜑})
7 dfrab3 3213 . . . 4 {𝑦𝐴𝜑} = (𝐴 ∩ {𝑦𝜑})
86, 7eqtr4i 2063 . . 3 (𝐴𝐶) = {𝑦𝐴𝜑}
9 dfrab3 3213 . . . 4 {𝑦𝐵 ∣ ¬ 𝜑} = (𝐵 ∩ {𝑦 ∣ ¬ 𝜑})
10 notab 3207 . . . . . 6 {𝑦 ∣ ¬ 𝜑} = (V ∖ {𝑦𝜑})
115difeq2i 3059 . . . . . 6 (V ∖ 𝐶) = (V ∖ {𝑦𝜑})
1210, 11eqtr4i 2063 . . . . 5 {𝑦 ∣ ¬ 𝜑} = (V ∖ 𝐶)
1312ineq2i 3135 . . . 4 (𝐵 ∩ {𝑦 ∣ ¬ 𝜑}) = (𝐵 ∩ (V ∖ 𝐶))
149, 13eqtr2i 2061 . . 3 (𝐵 ∩ (V ∖ 𝐶)) = {𝑦𝐵 ∣ ¬ 𝜑}
158, 14uneq12i 3095 . 2 ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶))) = ({𝑦𝐴𝜑} ∪ {𝑦𝐵 ∣ ¬ 𝜑})
161, 15eqtr4i 2063 1 if(𝜑, 𝐴, 𝐵) = ((𝐴𝐶) ∪ (𝐵 ∩ (V ∖ 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1243  {cab 2026  {crab 2310  Vcvv 2557  cdif 2914  cun 2915  cin 2916  ifcif 3331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-if 3332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator