ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi12d Structured version   GIF version

Theorem 3anbi12d 1207
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.)
Hypotheses
Ref Expression
3anbi12d.1 (φ → (ψχ))
3anbi12d.2 (φ → (θτ))
Assertion
Ref Expression
3anbi12d (φ → ((ψ θ η) ↔ (χ τ η)))

Proof of Theorem 3anbi12d
StepHypRef Expression
1 3anbi12d.1 . 2 (φ → (ψχ))
2 3anbi12d.2 . 2 (φ → (θτ))
3 biidd 161 . 2 (φ → (ηη))
41, 2, 33anbi123d 1206 1 (φ → ((ψ θ η) ↔ (χ τ η)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   w3a 884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 886
This theorem is referenced by:  3anbi1d  1210  3anbi2d  1211  fseq1m1p1  8727
  Copyright terms: Public domain W3C validator