ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfr2dc GIF version

Theorem euxfr2dc 2726
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2dc.1 𝐴 ∈ V
euxfr2dc.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2dc (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2dc
StepHypRef Expression
1 euxfr2dc.2 . . . . . . 7 ∃*𝑦 𝑥 = 𝐴
21moani 1970 . . . . . 6 ∃*𝑦(𝜑𝑥 = 𝐴)
3 ancom 253 . . . . . . 7 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
43mobii 1937 . . . . . 6 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
52, 4mpbi 133 . . . . 5 ∃*𝑦(𝑥 = 𝐴𝜑)
65ax-gen 1338 . . . 4 𝑥∃*𝑦(𝑥 = 𝐴𝜑)
7 excom 1554 . . . . . 6 (∃𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥𝑦(𝑥 = 𝐴𝜑))
87dcbii 747 . . . . 5 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) ↔ DECID𝑥𝑦(𝑥 = 𝐴𝜑))
9 2euswapdc 1991 . . . . 5 (DECID𝑥𝑦(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
108, 9sylbi 114 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))))
116, 10mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
12 moeq 2716 . . . . . . 7 ∃*𝑥 𝑥 = 𝐴
1312moani 1970 . . . . . 6 ∃*𝑥(𝜑𝑥 = 𝐴)
143mobii 1937 . . . . . 6 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1513, 14mpbi 133 . . . . 5 ∃*𝑥(𝑥 = 𝐴𝜑)
1615ax-gen 1338 . . . 4 𝑦∃*𝑥(𝑥 = 𝐴𝜑)
17 2euswapdc 1991 . . . 4 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))))
1816, 17mpi 15 . . 3 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
1911, 18impbid 120 . 2 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
20 euxfr2dc.1 . . . 4 𝐴 ∈ V
21 biidd 161 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
2220, 21ceqsexv 2593 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
2322eubii 1909 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
2419, 23syl6bb 185 1 (DECID𝑦𝑥(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  DECID wdc 742  wal 1241   = wceq 1243  wex 1381  wcel 1393  ∃!weu 1900  ∃*wmo 1901  Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  euxfrdc  2727
  Copyright terms: Public domain W3C validator