![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn0 | GIF version |
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
1nn0 | ⊢ 1 ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 7925 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | nnnn0i 8189 | 1 ⊢ 1 ∈ ℕ0 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 1c1 6890 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-1re 6978 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-int 3616 df-inn 7915 df-n0 8182 |
This theorem is referenced by: peano2nn0 8222 numsucc 8393 numadd 8401 numaddc 8402 6p5lem 8416 6p6e12 8418 7p5e12 8420 8p4e12 8424 9p2e11 8429 9p3e12 8430 10p10e20 8437 4t4e16 8440 5t4e20 8442 6t3e18 8445 6t4e24 8446 7t3e21 8450 7t4e28 8451 8t3e24 8456 9t3e27 8463 9t9e81 8469 nn01to3 8552 elfzom1elp1fzo 9058 fzo0sn0fzo1 9077 expn1ap0 9265 nn0expcl 9269 sqval 9312 |
Copyright terms: Public domain | W3C validator |