ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1nn0 Structured version   GIF version

Theorem 1nn0 7973
Description: 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
1nn0 1 0

Proof of Theorem 1nn0
StepHypRef Expression
1 1nn 7706 . 2 1
21nnnn0i 7965 1 1 0
Colors of variables: wff set class
Syntax hints:   wcel 1390  1c1 6712  0cn0 7957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-1re 6777
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-int 3607  df-inn 7696  df-n0 7958
This theorem is referenced by:  peano2nn0  7998  numsucc  8169  numadd  8177  numaddc  8178  6p5lem  8192  6p6e12  8194  7p5e12  8196  8p4e12  8200  9p2e11  8205  9p3e12  8206  10p10e20  8213  4t4e16  8216  5t4e20  8218  6t3e18  8221  6t4e24  8222  7t3e21  8226  7t4e28  8227  8t3e24  8232  9t3e27  8239  9t9e81  8245  nn01to3  8328  elfzom1elp1fzo  8828  fzo0sn0fzo1  8847  expn1ap0  8919  nn0expcl  8923  sqval  8966
  Copyright terms: Public domain W3C validator