ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn01to3 GIF version

Theorem nn01to3 8552
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
nn01to3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))

Proof of Theorem nn01to3
StepHypRef Expression
1 simp2 905 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 1 ≤ 𝑁)
2 simp1 904 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℕ0)
3 1z 8271 . . . . . . . . 9 1 ∈ ℤ
4 nn0z 8265 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 8292 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 393 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
72, 6syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
81, 7mpbid 135 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 < 𝑁 ∨ 1 = 𝑁))
9 1nn0 8197 . . . . . . . . . . 11 1 ∈ ℕ0
10 nn0ltp1le 8306 . . . . . . . . . . 11 ((1 ∈ ℕ0𝑁 ∈ ℕ0) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
119, 10mpan 400 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
12 df-2 7973 . . . . . . . . . . 11 2 = (1 + 1)
1312breq1i 3771 . . . . . . . . . 10 (2 ≤ 𝑁 ↔ (1 + 1) ≤ 𝑁)
1411, 13syl6bbr 187 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ 2 ≤ 𝑁))
15 2z 8273 . . . . . . . . . 10 2 ∈ ℤ
16 zleloe 8292 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1715, 4, 16sylancr 393 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1814, 17bitrd 177 . . . . . . . 8 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1918orbi1d 705 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
202, 19syl 14 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 < 𝑁 ∨ 1 = 𝑁) ↔ ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁)))
218, 20mpbid 135 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((2 < 𝑁 ∨ 2 = 𝑁) ∨ 1 = 𝑁))
2221orcomd 648 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)))
23 orcom 647 . . . . 5 ((2 < 𝑁 ∨ 2 = 𝑁) ↔ (2 = 𝑁 ∨ 2 < 𝑁))
2423orbi2i 679 . . . 4 ((1 = 𝑁 ∨ (2 < 𝑁 ∨ 2 = 𝑁)) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2522, 24sylib 127 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
26 3orass 888 . . 3 ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) ↔ (1 = 𝑁 ∨ (2 = 𝑁 ∨ 2 < 𝑁)))
2725, 26sylibr 137 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁))
28 3mix1 1073 . . . . 5 (𝑁 = 1 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
2928eqcoms 2043 . . . 4 (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3029a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (1 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
31 3mix2 1074 . . . . 5 (𝑁 = 2 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3231eqcoms 2043 . . . 4 (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
3332a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 = 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
34 simp3 906 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ≤ 3)
3534biantrurd 289 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (3 ≤ 𝑁 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
36 2nn0 8198 . . . . . . . 8 2 ∈ ℕ0
37 nn0ltp1le 8306 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3836, 37mpan 400 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
39 df-3 7974 . . . . . . . 8 3 = (2 + 1)
4039breq1i 3771 . . . . . . 7 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
4138, 40syl6bbr 187 . . . . . 6 (𝑁 ∈ ℕ0 → (2 < 𝑁 ↔ 3 ≤ 𝑁))
422, 41syl 14 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 ↔ 3 ≤ 𝑁))
432nn0red 8236 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → 𝑁 ∈ ℝ)
44 3re 7989 . . . . . 6 3 ∈ ℝ
45 letri3 7099 . . . . . 6 ((𝑁 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4643, 44, 45sylancl 392 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 3 ↔ (𝑁 ≤ 3 ∧ 3 ≤ 𝑁)))
4735, 42, 463bitr4d 209 . . . 4 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁𝑁 = 3))
48 3mix3 1075 . . . 4 (𝑁 = 3 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
4947, 48syl6bi 152 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (2 < 𝑁 → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5030, 33, 493jaod 1199 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → ((1 = 𝑁 ∨ 2 = 𝑁 ∨ 2 < 𝑁) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)))
5127, 50mpd 13 1 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  w3o 884  w3a 885   = wceq 1243  wcel 1393   class class class wbr 3764  (class class class)co 5512  cr 6888  1c1 6890   + caddc 6892   < clt 7060  cle 7061  2c2 7964  3c3 7965  0cn0 8181  cz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-2 7973  df-3 7974  df-n0 8182  df-z 8246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator