![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexeq | Unicode version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2178 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2178 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | rexeqf 2502 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 |
This theorem is referenced by: rexeqi 2510 rexeqdv 2512 rexeqbi1dv 2514 unieq 3589 bnd2 3926 exss 3963 qseq1 6154 bj-nn0sucALT 10103 strcoll2 10108 sscoll2 10113 |
Copyright terms: Public domain | W3C validator |