ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqsn Structured version   Unicode version

Theorem preqsn 3537
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1  _V
preqsn.2  _V
preqsn.3  C 
_V
Assertion
Ref Expression
preqsn  { ,  }  { C }  C

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3381 . . 3  { C }  { C ,  C }
21eqeq2i 2047 . 2  { ,  }  { C }  { ,  }  { C ,  C }
3 preqsn.1 . . . 4  _V
4 preqsn.2 . . . 4  _V
5 preqsn.3 . . . 4  C 
_V
63, 4, 5, 5preq12b 3532 . . 3  { ,  }  { C ,  C }  C  C  C  C
7 oridm 673 . . . 4  C  C  C  C  C  C
8 eqtr3 2056 . . . . . 6  C  C
9 simpr 103 . . . . . 6  C  C  C
108, 9jca 290 . . . . 5  C  C  C
11 eqtr 2054 . . . . . 6  C  C
12 simpr 103 . . . . . 6  C  C
1311, 12jca 290 . . . . 5  C  C  C
1410, 13impbii 117 . . . 4  C  C  C
157, 14bitri 173 . . 3  C  C  C  C  C
166, 15bitri 173 . 2  { ,  }  { C ,  C }  C
172, 16bitri 173 1  { ,  }  { C }  C
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   wo 628   wceq 1242   wcel 1390   _Vcvv 2551   {csn 3367   {cpr 3368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374
This theorem is referenced by:  opeqsn  3980  relop  4429
  Copyright terms: Public domain W3C validator