Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucuni2 | Unicode version |
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
onsucuni2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2100 | . . . . . 6 | |
2 | 1 | biimpac 282 | . . . . 5 |
3 | sucelon 4229 | . . . . . . 7 | |
4 | eloni 4112 | . . . . . . . . . 10 | |
5 | ordtr 4115 | . . . . . . . . . 10 | |
6 | 4, 5 | syl 14 | . . . . . . . . 9 |
7 | unisucg 4151 | . . . . . . . . 9 | |
8 | 6, 7 | mpbid 135 | . . . . . . . 8 |
9 | suceq 4139 | . . . . . . . 8 | |
10 | 8, 9 | syl 14 | . . . . . . 7 |
11 | 3, 10 | sylbir 125 | . . . . . 6 |
12 | eloni 4112 | . . . . . . . 8 | |
13 | ordtr 4115 | . . . . . . . 8 | |
14 | 12, 13 | syl 14 | . . . . . . 7 |
15 | unisucg 4151 | . . . . . . 7 | |
16 | 14, 15 | mpbid 135 | . . . . . 6 |
17 | 11, 16 | eqtr4d 2075 | . . . . 5 |
18 | 2, 17 | syl 14 | . . . 4 |
19 | unieq 3589 | . . . . . 6 | |
20 | suceq 4139 | . . . . . 6 | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | suceq 4139 | . . . . . 6 | |
23 | 22 | unieqd 3591 | . . . . 5 |
24 | 21, 23 | eqeq12d 2054 | . . . 4 |
25 | 18, 24 | syl5ibr 145 | . . 3 |
26 | 25 | anabsi7 515 | . 2 |
27 | eloni 4112 | . . . . 5 | |
28 | ordtr 4115 | . . . . 5 | |
29 | 27, 28 | syl 14 | . . . 4 |
30 | unisucg 4151 | . . . 4 | |
31 | 29, 30 | mpbid 135 | . . 3 |
32 | 31 | adantr 261 | . 2 |
33 | 26, 32 | eqtrd 2072 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wcel 1393 cuni 3580 wtr 3854 word 4099 con0 4100 csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-tr 3855 df-iord 4103 df-on 4105 df-suc 4108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |