![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4d | Unicode version |
Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) |
Ref | Expression |
---|---|
eqtr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqtr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr4d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqtr4d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eqcomd 2045 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtrd 2072 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: 3eqtr2d 2078 3eqtr2rd 2079 3eqtr4d 2082 3eqtr4rd 2083 3eqtr4a 2098 sbnfc2 2906 onsucuni2 4288 relop 4486 riinint 4593 iotauni 4879 fniinfv 5231 fsn2 5337 fmptapd 5354 fconst2g 5376 fniunfv 5401 ofres 5725 ofco 5729 frecsuclem2 5989 frecrdg 5992 oasuc 6044 nnacom 6063 nnaass 6064 nndi 6065 nnmass 6066 nnmsucr 6067 nnmcom 6068 uniqs2 6166 en1bg 6280 fundmen 6286 phplem4dom 6324 addcmpblnq 6465 distrnqg 6485 ltexnqq 6506 addcmpblnq0 6541 nqnq0a 6552 nqnq0m 6553 nq0m0r 6554 nq0a0 6555 nnanq0 6556 distrnq0 6557 prarloclemlo 6592 prarloclemcalc 6600 genpassl 6622 genpassu 6623 ltsosr 6849 0idsr 6852 1idsr 6853 mulextsr1lem 6864 cnegex 7189 subsub3 7243 subadd4 7255 mulneg12 7394 mulsub 7398 apreap 7578 cru 7593 recextlem1 7632 cju 7913 halfaddsub 8159 nn0supp 8234 nneo 8341 zeo2 8344 uzin 8505 iccf1o 8872 fzsuc2 8941 flqeqceilz 9160 zmod1congr 9183 frec2uzrdg 9195 iseqss 9226 iseqfveq2 9228 iseqsplit 9238 iseqdistr 9249 iser0f 9251 expp1 9262 mulexp 9294 mulexpzap 9295 expadd 9297 expaddzap 9299 expmul 9300 expmulzap 9301 expsubap 9302 expdivap 9305 subsq 9358 binom3 9366 bernneq 9369 shftval2 9427 shftval4 9429 crre 9457 remim 9460 remullem 9471 cjexp 9493 cnrecnv 9510 resqrexlemlo 9611 resqrexlemcalc1 9612 resqrexlemcalc2 9613 resqrexlemcalc3 9614 resqrexlemnm 9616 rsqrmo 9625 abscj 9650 absid 9669 absre 9673 recvalap 9693 climaddc1 9849 climmulc2 9851 climsubc1 9852 climsubc2 9853 climcvg1nlem 9868 sqrt2irr 9878 ialgrp1 9885 |
Copyright terms: Public domain | W3C validator |