ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxrlt Unicode version

Theorem ltxrlt 7085
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7065 . . . . 5  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
21breqi 3770 . . . 4  |-  ( A  <  B  <->  A ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) B )
3 brun 3810 . . . 4  |-  ( A ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) ) B  <-> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
42, 3bitri 173 . . 3  |-  ( A  <  B  <->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
5 eleq1 2100 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  RR  <->  A  e.  RR ) )
6 breq1 3767 . . . . . . 7  |-  ( x  =  A  ->  (
x  <RR  y  <->  A  <RR  y ) )
75, 63anbi13d 1209 . . . . . 6  |-  ( x  =  A  ->  (
( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y ) ) )
8 eleq1 2100 . . . . . . 7  |-  ( y  =  B  ->  (
y  e.  RR  <->  B  e.  RR ) )
9 breq2 3768 . . . . . . 7  |-  ( y  =  B  ->  ( A  <RR  y  <->  A  <RR  B ) )
108, 93anbi23d 1210 . . . . . 6  |-  ( y  =  B  ->  (
( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y )  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
11 eqid 2040 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }
127, 10, 11brabg 4006 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
13 simp3 906 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <RR  B )
1412, 13syl6bi 152 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  ->  A  <RR  B ) )
15 brun 3810 . . . . 5  |-  ( A ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  \/  A ( { -oo }  X.  RR ) B ) )
16 brxp 4375 . . . . . . . . . . 11  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  <-> 
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } ) )
1716simprbi 260 . . . . . . . . . 10  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  e.  { +oo } )
18 elsni 3393 . . . . . . . . . 10  |-  ( B  e.  { +oo }  ->  B  = +oo )
1917, 18syl 14 . . . . . . . . 9  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  = +oo )
2019a1i 9 . . . . . . . 8  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  B  = +oo ) )
21 renepnf 7073 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  =/= +oo )
2221neneqd 2226 . . . . . . . 8  |-  ( B  e.  RR  ->  -.  B  = +oo )
23 pm2.24 551 . . . . . . . 8  |-  ( B  = +oo  ->  ( -.  B  = +oo  ->  A  <RR  B ) )
2420, 22, 23syl6ci 1334 . . . . . . 7  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  A  <RR  B ) )
2524adantl 262 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  ->  A  <RR  B ) )
26 brxp 4375 . . . . . . . . . . 11  |-  ( A ( { -oo }  X.  RR ) B  <->  ( A  e.  { -oo }  /\  B  e.  RR )
)
2726simplbi 259 . . . . . . . . . 10  |-  ( A ( { -oo }  X.  RR ) B  ->  A  e.  { -oo }
)
28 elsni 3393 . . . . . . . . . 10  |-  ( A  e.  { -oo }  ->  A  = -oo )
2927, 28syl 14 . . . . . . . . 9  |-  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo )
3029a1i 9 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo ) )
31 renemnf 7074 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
3231neneqd 2226 . . . . . . . 8  |-  ( A  e.  RR  ->  -.  A  = -oo )
33 pm2.24 551 . . . . . . . 8  |-  ( A  = -oo  ->  ( -.  A  = -oo  ->  A  <RR  B ) )
3430, 32, 33syl6ci 1334 . . . . . . 7  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3534adantr 261 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3625, 35jaod 637 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  \/  A ( { -oo }  X.  RR ) B )  ->  A  <RR  B ) )
3715, 36syl5bi 141 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  ->  A  <RR  B ) )
3814, 37jaod 637 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B )  ->  A  <RR  B ) )
394, 38syl5bi 141 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <RR  B ) )
40123adant3 924 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
4140ibir 166 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )
4241orcd 652 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
4342, 4sylibr 137 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <  B )
44433expia 1106 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  ->  A  <  B ) )
4539, 44impbid 120 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393    u. cun 2915   {csn 3375   class class class wbr 3764   {copab 3817    X. cxp 4343   RRcr 6888    <RR cltrr 6893   +oocpnf 7057   -oocmnf 7058    < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-pnf 7062  df-mnf 7063  df-ltxr 7065
This theorem is referenced by:  axltirr  7086  axltwlin  7087  axlttrn  7088  axltadd  7089  axapti  7090  axmulgt0  7091  0lt1  7141  recexre  7569  recexgt0  7571  remulext1  7590  arch  8178  caucvgrelemcau  9579  caucvgre  9580
  Copyright terms: Public domain W3C validator