ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi Structured version   Unicode version

Theorem isfi 6177
Description: Express " is finite." Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi  Fin  om  ~~
Distinct variable group:   ,

Proof of Theorem isfi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-fin 6160 . . 3  Fin  {  |  om  ~~  }
21eleq2i 2101 . 2  Fin  {  |  om  ~~  }
3 relen 6161 . . . . 5  Rel  ~~
43brrelexi 4327 . . . 4 
~~  _V
54rexlimivw 2423 . . 3  om  ~~  _V
6 breq1 3758 . . . 4  ~~  ~~
76rexbidv 2321 . . 3  om  ~~  om  ~~
85, 7elab3 2688 . 2  {  |  om  ~~  }  om  ~~
92, 8bitri 173 1  Fin  om  ~~
Colors of variables: wff set class
Syntax hints:   wb 98   wceq 1242   wcel 1390   {cab 2023  wrex 2301   _Vcvv 2551   class class class wbr 3755   omcom 4256    ~~ cen 6155   Fincfn 6157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295  df-en 6158  df-fin 6160
This theorem is referenced by:  snfig  6227  nnfi  6251  enfi  6252  ssfiexmid  6254
  Copyright terms: Public domain W3C validator