ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diffisn Unicode version

Theorem diffisn 6350
Description: Subtracting a singleton from a finite set produces a finite set. (Contributed by Jim Kingdon, 11-Sep-2021.)
Assertion
Ref Expression
diffisn  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )

Proof of Theorem diffisn
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6241 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 113 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantr 261 . 2  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. n  e.  om  A  ~~  n )
4 elex2 2570 . . . . . . . . 9  |-  ( B  e.  A  ->  E. x  x  e.  A )
54adantl 262 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  E. x  x  e.  A )
6 fin0 6342 . . . . . . . . 9  |-  ( A  e.  Fin  ->  ( A  =/=  (/)  <->  E. x  x  e.  A ) )
76adantr 261 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  =/=  (/)  <->  E. x  x  e.  A )
)
85, 7mpbird 156 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  A  =/=  (/) )
98adantr 261 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  A  =/=  (/) )
109neneqd 2226 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  A  =  (/) )
11 simplrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n
)
12 en0 6275 . . . . . . . . 9  |-  ( n 
~~  (/)  <->  n  =  (/) )
1312biimpri 124 . . . . . . . 8  |-  ( n  =  (/)  ->  n  ~~  (/) )
1413adantl 262 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  ~~  (/) )
15 entr 6264 . . . . . . 7  |-  ( ( A  ~~  n  /\  n  ~~  (/) )  ->  A  ~~  (/) )
1611, 14, 15syl2anc 391 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
17 en0 6275 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
1816, 17sylib 127 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
1910, 18mtand 591 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  -.  n  =  (/) )
20 nn0suc 4327 . . . . . 6  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
2120orcomd 648 . . . . 5  |-  ( n  e.  om  ->  ( E. m  e.  om  n  =  suc  m  \/  n  =  (/) ) )
2221ad2antrl 459 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( E. m  e. 
om  n  =  suc  m  \/  n  =  (/) ) )
2319, 22ecased 1239 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  ->  E. m  e.  om  n  =  suc  m )
24 nnfi 6333 . . . . 5  |-  ( m  e.  om  ->  m  e.  Fin )
2524ad2antrl 459 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  Fin )
26 simprl 483 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  m  e.  om )
27 simplrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  n )
28 breq2 3768 . . . . . . 7  |-  ( n  =  suc  m  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
2928ad2antll 460 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  ~~  n  <->  A 
~~  suc  m )
)
3027, 29mpbid 135 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  A  ~~  suc  m )
31 simpllr 486 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  ->  B  e.  A )
32 dif1en 6337 . . . . 5  |-  ( ( m  e.  om  /\  A  ~~  suc  m  /\  B  e.  A )  ->  ( A  \  { B } )  ~~  m
)
3326, 30, 31, 32syl3anc 1135 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  ~~  m
)
34 enfii 6335 . . . 4  |-  ( ( m  e.  Fin  /\  ( A  \  { B } )  ~~  m
)  ->  ( A  \  { B } )  e.  Fin )
3525, 33, 34syl2anc 391 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  A )  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  ( m  e. 
om  /\  n  =  suc  m ) )  -> 
( A  \  { B } )  e.  Fin )
3623, 35rexlimddv 2437 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  A )  /\  ( n  e. 
om  /\  A  ~~  n ) )  -> 
( A  \  { B } )  e.  Fin )
373, 36rexlimddv 2437 1  |-  ( ( A  e.  Fin  /\  B  e.  A )  ->  ( A  \  { B } )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393    =/= wne 2204   E.wrex 2307    \ cdif 2914   (/)c0 3224   {csn 3375   class class class wbr 3764   suc csuc 4102   omcom 4313    ~~ cen 6219   Fincfn 6221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-er 6106  df-en 6222  df-fin 6224
This theorem is referenced by:  diffifi  6351
  Copyright terms: Public domain W3C validator