Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard Unicode version

Theorem findcard 6345
 Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1
findcard.2
findcard.3
findcard.4
findcard.5
findcard.6
Assertion
Ref Expression
findcard
Distinct variable groups:   ,,,   ,   ,   ,   ,   ,,
Allowed substitution hints:   ()   (,)   (,)   (,)   (,)

Proof of Theorem findcard
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2
2 isfi 6241 . . 3
3 breq2 3768 . . . . . . . 8
43imbi1d 220 . . . . . . 7
54albidv 1705 . . . . . 6
6 breq2 3768 . . . . . . . 8
76imbi1d 220 . . . . . . 7
87albidv 1705 . . . . . 6
9 breq2 3768 . . . . . . . 8
109imbi1d 220 . . . . . . 7
1110albidv 1705 . . . . . 6
12 en0 6275 . . . . . . . 8
13 findcard.5 . . . . . . . . 9
14 findcard.1 . . . . . . . . 9
1513, 14mpbiri 157 . . . . . . . 8
1612, 15sylbi 114 . . . . . . 7
1716ax-gen 1338 . . . . . 6
18 peano2 4318 . . . . . . . . . . . . 13
19 breq2 3768 . . . . . . . . . . . . . 14
2019rspcev 2656 . . . . . . . . . . . . 13
2118, 20sylan 267 . . . . . . . . . . . 12
22 isfi 6241 . . . . . . . . . . . 12
2321, 22sylibr 137 . . . . . . . . . . 11
24233adant2 923 . . . . . . . . . 10
25 dif1en 6337 . . . . . . . . . . . . . . . 16
26253expa 1104 . . . . . . . . . . . . . . 15
27 vex 2560 . . . . . . . . . . . . . . . . 17
28 difexg 3898 . . . . . . . . . . . . . . . . 17
2927, 28ax-mp 7 . . . . . . . . . . . . . . . 16
30 breq1 3767 . . . . . . . . . . . . . . . . 17
31 findcard.2 . . . . . . . . . . . . . . . . 17
3230, 31imbi12d 223 . . . . . . . . . . . . . . . 16
3329, 32spcv 2646 . . . . . . . . . . . . . . 15
3426, 33syl5com 26 . . . . . . . . . . . . . 14
3534ralrimdva 2399 . . . . . . . . . . . . 13
3635imp 115 . . . . . . . . . . . 12
3736an32s 502 . . . . . . . . . . 11
38373impa 1099 . . . . . . . . . 10
39 findcard.6 . . . . . . . . . 10
4024, 38, 39sylc 56 . . . . . . . . 9
41403exp 1103 . . . . . . . 8
4241alrimdv 1756 . . . . . . 7
43 breq1 3767 . . . . . . . . 9
44 findcard.3 . . . . . . . . 9
4543, 44imbi12d 223 . . . . . . . 8
4645cbvalv 1794 . . . . . . 7
4742, 46syl6ibr 151 . . . . . 6
485, 8, 11, 17, 47finds1 4325 . . . . 5
494819.21bi 1450 . . . 4
5049rexlimiv 2427 . . 3
512, 50sylbi 114 . 2
521, 51vtoclga 2619 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   w3a 885  wal 1241   wceq 1243   wcel 1393  wral 2306  wrex 2307  cvv 2557   cdif 2914  c0 3224  csn 3375   class class class wbr 3764   csuc 4102  com 4313   cen 6219  cfn 6221 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-er 6106  df-en 6222  df-fin 6224 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator