Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cofunexg | Unicode version |
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cofunexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 4819 | . . 3 | |
2 | relssdmrn 4841 | . . 3 | |
3 | 1, 2 | ax-mp 7 | . 2 |
4 | dmcoss 4601 | . . . . 5 | |
5 | dmexg 4596 | . . . . 5 | |
6 | ssexg 3896 | . . . . 5 | |
7 | 4, 5, 6 | sylancr 393 | . . . 4 |
8 | 7 | adantl 262 | . . 3 |
9 | rnco 4827 | . . . 4 | |
10 | rnexg 4597 | . . . . . 6 | |
11 | resfunexg 5382 | . . . . . 6 | |
12 | 10, 11 | sylan2 270 | . . . . 5 |
13 | rnexg 4597 | . . . . 5 | |
14 | 12, 13 | syl 14 | . . . 4 |
15 | 9, 14 | syl5eqel 2124 | . . 3 |
16 | xpexg 4452 | . . 3 | |
17 | 8, 15, 16 | syl2anc 391 | . 2 |
18 | ssexg 3896 | . 2 | |
19 | 3, 17, 18 | sylancr 393 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wcel 1393 cvv 2557 wss 2917 cxp 4343 cdm 4345 crn 4346 cres 4347 ccom 4349 wrel 4350 wfun 4896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 |
This theorem is referenced by: cofunex2g 5739 |
Copyright terms: Public domain | W3C validator |