Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunexg GIF version

Theorem cofunexg 5738
 Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 4819 . . 3 Rel (𝐴𝐵)
2 relssdmrn 4841 . . 3 (Rel (𝐴𝐵) → (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)))
31, 2ax-mp 7 . 2 (𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵))
4 dmcoss 4601 . . . . 5 dom (𝐴𝐵) ⊆ dom 𝐵
5 dmexg 4596 . . . . 5 (𝐵𝐶 → dom 𝐵 ∈ V)
6 ssexg 3896 . . . . 5 ((dom (𝐴𝐵) ⊆ dom 𝐵 ∧ dom 𝐵 ∈ V) → dom (𝐴𝐵) ∈ V)
74, 5, 6sylancr 393 . . . 4 (𝐵𝐶 → dom (𝐴𝐵) ∈ V)
87adantl 262 . . 3 ((Fun 𝐴𝐵𝐶) → dom (𝐴𝐵) ∈ V)
9 rnco 4827 . . . 4 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
10 rnexg 4597 . . . . . 6 (𝐵𝐶 → ran 𝐵 ∈ V)
11 resfunexg 5382 . . . . . 6 ((Fun 𝐴 ∧ ran 𝐵 ∈ V) → (𝐴 ↾ ran 𝐵) ∈ V)
1210, 11sylan2 270 . . . . 5 ((Fun 𝐴𝐵𝐶) → (𝐴 ↾ ran 𝐵) ∈ V)
13 rnexg 4597 . . . . 5 ((𝐴 ↾ ran 𝐵) ∈ V → ran (𝐴 ↾ ran 𝐵) ∈ V)
1412, 13syl 14 . . . 4 ((Fun 𝐴𝐵𝐶) → ran (𝐴 ↾ ran 𝐵) ∈ V)
159, 14syl5eqel 2124 . . 3 ((Fun 𝐴𝐵𝐶) → ran (𝐴𝐵) ∈ V)
16 xpexg 4452 . . 3 ((dom (𝐴𝐵) ∈ V ∧ ran (𝐴𝐵) ∈ V) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
178, 15, 16syl2anc 391 . 2 ((Fun 𝐴𝐵𝐶) → (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V)
18 ssexg 3896 . 2 (((𝐴𝐵) ⊆ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∧ (dom (𝐴𝐵) × ran (𝐴𝐵)) ∈ V) → (𝐴𝐵) ∈ V)
193, 17, 18sylancr 393 1 ((Fun 𝐴𝐵𝐶) → (𝐴𝐵) ∈ V)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1393  Vcvv 2557   ⊆ wss 2917   × cxp 4343  dom cdm 4345  ran crn 4346   ↾ cres 4347   ∘ ccom 4349  Rel wrel 4350  Fun wfun 4896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910 This theorem is referenced by:  cofunex2g  5739
 Copyright terms: Public domain W3C validator