Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > times2i | GIF version |
Description: A number times 2. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
2times.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
times2i | ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | times2 8039 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 2) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴 · 2) = (𝐴 + 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 + caddc 6892 · cmul 6894 2c2 7964 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-mulcom 6985 ax-mulass 6987 ax-distr 6988 ax-1rid 6991 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-2 7973 |
This theorem is referenced by: 3t2e6 8071 4t2e8 8073 5t2e10 8074 6t2e12 8444 7t2e14 8449 8t2e16 8455 9t2e18 8462 |
Copyright terms: Public domain | W3C validator |