ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssid Structured version   GIF version

Theorem ssid 2937
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
ssid AA

Proof of Theorem ssid
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (x Ax A)
21ssriv 2922 1 AA
Colors of variables: wff set class
Syntax hints:   wcel 1370  wss 2890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-11 1374  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-i5r 1406  ax-ext 2000
This theorem depends on definitions:  df-bi 110  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011  df-clel 2014  df-in 2897  df-ss 2904
This theorem is referenced by:  eqimssi  2972  eqimss2i  2973  nsspssun  3143  inv1  3226  disjpss  3251  difid  3265  undifabs  3273  pwidg  3343  elssuni  3578  unimax  3584  intmin  3605  rintm  3714  iunpw  4157  sucprcreg  4207  tfisi  4233  peano5  4244  xpss1  4371  xpss2  4372  residm  4565  resdm  4572  resmpt3  4580  ssrnres  4686  dffn3  4975  fimacnv  5217  tfrlem1  5841  rdgss  5886  1idprl  6423  1idpru  6424  ltexprlemm  6431
  Copyright terms: Public domain W3C validator