Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdm GIF version

Theorem resdm 4649
 Description: A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resdm (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)

Proof of Theorem resdm
StepHypRef Expression
1 ssid 2964 . 2 dom 𝐴 ⊆ dom 𝐴
2 relssres 4648 . 2 ((Rel 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → (𝐴 ↾ dom 𝐴) = 𝐴)
31, 2mpan2 401 1 (Rel 𝐴 → (𝐴 ↾ dom 𝐴) = 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ⊆ wss 2917  dom cdm 4345   ↾ cres 4347  Rel wrel 4350 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-dm 4355  df-res 4357 This theorem is referenced by:  resdm2  4811  relresfld  4847  relcoi1  4849  funimaexg  4983  fnex  5383  dftpos2  5876  dif1en  6337
 Copyright terms: Public domain W3C validator