ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2va Structured version   GIF version

Theorem rspc2va 2640
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.)
Hypotheses
Ref Expression
rspc2v.1 (x = A → (φχ))
rspc2v.2 (y = B → (χψ))
Assertion
Ref Expression
rspc2va (((A 𝐶 B 𝐷) x 𝐶 y 𝐷 φ) → ψ)
Distinct variable groups:   x,y,A   y,B   x,𝐶   x,𝐷,y   χ,x   ψ,y
Allowed substitution hints:   φ(x,y)   ψ(x)   χ(y)   B(x)   𝐶(y)

Proof of Theorem rspc2va
StepHypRef Expression
1 rspc2v.1 . . 3 (x = A → (φχ))
2 rspc2v.2 . . 3 (y = B → (χψ))
31, 2rspc2v 2639 . 2 ((A 𝐶 B 𝐷) → (x 𝐶 y 𝐷 φψ))
43imp 115 1 (((A 𝐶 B 𝐷) x 𝐶 y 𝐷 φ) → ψ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1228   wcel 1374  wral 2284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-v 2537
This theorem is referenced by:  swopo  4017  ordtri2orexmid  4195  onsucelsucexmid  4199  ordsucunielexmid  4200  isocnv  5376  isotr  5381  off  5647  caofrss  5658
  Copyright terms: Public domain W3C validator