![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qsinxp | GIF version |
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qsinxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecinxp 6181 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))) | |
2 | 1 | eqeq2d 2051 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
3 | 2 | rexbidva 2323 | . . 3 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
4 | 3 | abbidv 2155 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}) |
5 | df-qs 6112 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
6 | df-qs 6112 | . 2 ⊢ (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))} | |
7 | 4, 5, 6 | 3eqtr4g 2097 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∈ wcel 1393 {cab 2026 ∃wrex 2307 ∩ cin 2916 ⊆ wss 2917 × cxp 4343 “ cima 4348 [cec 6104 / cqs 6105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-ec 6108 df-qs 6112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |