ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsinxp Unicode version

Theorem qsinxp 6118
Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Assertion
Ref Expression
qsinxp  R " 
C_  /. R  /. R  i^i  X.

Proof of Theorem qsinxp
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecinxp 6117 . . . . 5  R "  C_  R  R  i^i  X.
21eqeq2d 2048 . . . 4  R "  C_  R  R  i^i  X.
32rexbidva 2317 . . 3  R " 
C_  R  R  i^i  X.
43abbidv 2152 . 2  R " 
C_  {  |  R }  {  |  R  i^i  X.  }
5 df-qs 6048 . 2 
/. R  {  |  R }
6 df-qs 6048 . 2 
/. R  i^i  X.  {  |  R  i^i  X.  }
74, 5, 63eqtr4g 2094 1  R " 
C_  /. R  /. R  i^i  X.
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wceq 1242   wcel 1390   {cab 2023  wrex 2301    i^i cin 2910    C_ wss 2911    X. cxp 4286   "cima 4291  cec 6040   /.cqs 6041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-ec 6044  df-qs 6048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator