ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab3g GIF version

Theorem fvopab3g 5245
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
fvopab3g.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3g.3 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3g.4 (𝑥𝐶 → ∃!𝑦𝜑)
fvopab3g.5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3g ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3g
StepHypRef Expression
1 eleq1 2100 . . . 4 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3g.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 442 . . 3 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3g.3 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 437 . . 3 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 4005 . 2 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
7 fvopab3g.4 . . . . . 6 (𝑥𝐶 → ∃!𝑦𝜑)
8 fvopab3g.5 . . . . . 6 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
97, 8fnopab 5023 . . . . 5 𝐹 Fn 𝐶
10 fnopfvb 5215 . . . . 5 ((𝐹 Fn 𝐶𝐴𝐶) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
119, 10mpan 400 . . . 4 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
128eleq2i 2104 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
1311, 12syl6bb 185 . . 3 (𝐴𝐶 → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
1413adantr 261 . 2 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
15 ibar 285 . . 3 (𝐴𝐶 → (𝜒 ↔ (𝐴𝐶𝜒)))
1615adantr 261 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 ↔ (𝐴𝐶𝜒)))
176, 14, 163bitr4d 209 1 ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  ∃!weu 1900  cop 3378  {copab 3817   Fn wfn 4897  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  recmulnqg  6489
  Copyright terms: Public domain W3C validator