![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcocnv2 | GIF version |
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
funcocnv2 | ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 4904 | . . 3 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | 1 | simprbi 260 | . 2 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) ⊆ I ) |
3 | iss 4654 | . . 3 ⊢ ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹))) | |
4 | dfdm4 4527 | . . . . . . . 8 ⊢ dom 𝐹 = ran ◡𝐹 | |
5 | dmcoeq 4604 | . . . . . . . 8 ⊢ (dom 𝐹 = ran ◡𝐹 → dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹) | |
6 | 4, 5 | ax-mp 7 | . . . . . . 7 ⊢ dom (𝐹 ∘ ◡𝐹) = dom ◡𝐹 |
7 | df-rn 4356 | . . . . . . 7 ⊢ ran 𝐹 = dom ◡𝐹 | |
8 | 6, 7 | eqtr4i 2063 | . . . . . 6 ⊢ dom (𝐹 ∘ ◡𝐹) = ran 𝐹 |
9 | 8 | a1i 9 | . . . . 5 ⊢ (Fun 𝐹 → dom (𝐹 ∘ ◡𝐹) = ran 𝐹) |
10 | 9 | reseq2d 4612 | . . . 4 ⊢ (Fun 𝐹 → ( I ↾ dom (𝐹 ∘ ◡𝐹)) = ( I ↾ ran 𝐹)) |
11 | 10 | eqeq2d 2051 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) = ( I ↾ dom (𝐹 ∘ ◡𝐹)) ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
12 | 3, 11 | syl5bb 181 | . 2 ⊢ (Fun 𝐹 → ((𝐹 ∘ ◡𝐹) ⊆ I ↔ (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹))) |
13 | 2, 12 | mpbid 135 | 1 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ⊆ wss 2917 I cid 4025 ◡ccnv 4344 dom cdm 4345 ran crn 4346 ↾ cres 4347 ∘ ccom 4349 Rel wrel 4350 Fun wfun 4896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-fun 4904 |
This theorem is referenced by: fococnv2 5152 f1cocnv2 5154 funcoeqres 5157 |
Copyright terms: Public domain | W3C validator |