ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmrexrn Structured version   GIF version

Theorem eldmrexrn 5251
Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
eldmrexrn (Fun 𝐹 → (𝑌 dom 𝐹x ran 𝐹 x = (𝐹𝑌)))
Distinct variable groups:   x,𝐹   x,𝑌

Proof of Theorem eldmrexrn
StepHypRef Expression
1 fvelrn 5241 . . 3 ((Fun 𝐹 𝑌 dom 𝐹) → (𝐹𝑌) ran 𝐹)
2 eqid 2037 . . 3 (𝐹𝑌) = (𝐹𝑌)
3 eqeq1 2043 . . . 4 (x = (𝐹𝑌) → (x = (𝐹𝑌) ↔ (𝐹𝑌) = (𝐹𝑌)))
43rspcev 2650 . . 3 (((𝐹𝑌) ran 𝐹 (𝐹𝑌) = (𝐹𝑌)) → x ran 𝐹 x = (𝐹𝑌))
51, 2, 4sylancl 392 . 2 ((Fun 𝐹 𝑌 dom 𝐹) → x ran 𝐹 x = (𝐹𝑌))
65ex 108 1 (Fun 𝐹 → (𝑌 dom 𝐹x ran 𝐹 x = (𝐹𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242   wcel 1390  wrex 2301  dom cdm 4288  ran crn 4289  Fun wfun 4839  cfv 4845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator