ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexg Structured version   GIF version

Theorem ecexg 6046
Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
Assertion
Ref Expression
ecexg (𝑅 B → [A]𝑅 V)

Proof of Theorem ecexg
StepHypRef Expression
1 df-ec 6044 . 2 [A]𝑅 = (𝑅 “ {A})
2 imaexg 4623 . 2 (𝑅 B → (𝑅 “ {A}) V)
31, 2syl5eqel 2121 1 (𝑅 B → [A]𝑅 V)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  Vcvv 2551  {csn 3367  cima 4291  [cec 6040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-ec 6044
This theorem is referenced by:  ecelqsg  6095  uniqs  6100  eroveu  6133  th3q  6147  dmaddpq  6363  dmmulpq  6364  addnnnq0  6432  mulnnnq0  6433  addsrpr  6673  mulsrpr  6674
  Copyright terms: Public domain W3C validator