![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvss | GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 2939 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (〈𝑦, 𝑥〉 ∈ 𝐴 → 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
2 | df-br 3765 | . . . 4 ⊢ (𝑦𝐴𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) | |
3 | df-br 3765 | . . . 4 ⊢ (𝑦𝐵𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) | |
4 | 1, 2, 3 | 3imtr4g 194 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) |
5 | 4 | ssopab2dv 4015 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
6 | df-cnv 4353 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
7 | df-cnv 4353 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
8 | 5, 6, 7 | 3sstr4g 2986 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 ⊆ wss 2917 〈cop 3378 class class class wbr 3764 {copab 3817 ◡ccnv 4344 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-in 2924 df-ss 2931 df-br 3765 df-opab 3819 df-cnv 4353 |
This theorem is referenced by: cnveq 4509 rnss 4564 relcnvtr 4840 funss 4920 funcnvuni 4968 funres11 4971 funcnvres 4972 foimacnv 5144 tposss 5861 |
Copyright terms: Public domain | W3C validator |