![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel | GIF version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssel | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 2934 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | biimpi 113 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | 2 | 19.21bi 1450 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | anim2d 320 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
5 | 4 | eximdv 1760 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵))) |
6 | df-clel 2036 | . 2 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐴)) | |
7 | df-clel 2036 | . 2 ⊢ (𝐶 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐶 ∧ 𝑥 ∈ 𝐵)) | |
8 | 5, 6, 7 | 3imtr4g 194 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∀wal 1241 = wceq 1243 ∃wex 1381 ∈ wcel 1393 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: ssel2 2940 sseli 2941 sseld 2944 sstr2 2952 ssralv 3004 ssrexv 3005 ralss 3006 rexss 3007 ssconb 3076 sscon 3077 ssdif 3078 unss1 3112 ssrin 3162 difin2 3199 reuss2 3217 reupick 3221 sssnm 3525 uniss 3601 ss2iun 3672 ssiun 3699 iinss 3708 disjss2 3748 disjss1 3751 pwnss 3912 sspwb 3952 ssopab2b 4013 soss 4051 sucssel 4161 ssorduni 4213 onintonm 4243 onnmin 4292 ssnel 4293 wessep 4302 ssrel 4428 ssrel2 4430 ssrelrel 4440 xpss12 4445 cnvss 4508 dmss 4534 elreldm 4560 dmcosseq 4603 relssres 4648 iss 4654 resopab2 4655 issref 4707 ssrnres 4763 dfco2a 4821 cores 4824 funssres 4942 fununi 4967 funimaexglem 4982 dfimafn 5222 funimass4 5224 funimass3 5283 dff4im 5313 funfvima2 5391 funfvima3 5392 f1elima 5412 riotass2 5494 ssoprab2b 5562 resoprab2 5598 releldm2 5811 reldmtpos 5868 dmtpos 5871 rdgss 5970 eqreznegel 8549 negm 8550 iccsupr 8835 bdop 9995 bj-nnen2lp 10079 |
Copyright terms: Public domain | W3C validator |