ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex12 Structured version   GIF version

Theorem brrelex12 4324
Description: A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex12 ((Rel 𝑅 A𝑅B) → (A V B V))

Proof of Theorem brrelex12
StepHypRef Expression
1 df-rel 4295 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 113 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32ssbrd 3796 . . 3 (Rel 𝑅 → (A𝑅BA(V × V)B))
43imp 115 . 2 ((Rel 𝑅 A𝑅B) → A(V × V)B)
5 brxp 4318 . 2 (A(V × V)B ↔ (A V B V))
64, 5sylib 127 1 ((Rel 𝑅 A𝑅B) → (A V B V))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   wcel 1390  Vcvv 2551  wss 2911   class class class wbr 3755   × cxp 4286  Rel wrel 4293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-rel 4295
This theorem is referenced by:  brrelex  4325  brrelex2  4326  relbrcnvg  4647  ovprc  5482  ersym  6054  relelec  6082  encv  6163
  Copyright terms: Public domain W3C validator