![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brinxp | GIF version |
Description: Intersection of binary relation with cross product. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
brinxp | ⊢ ((A ∈ 𝐶 ∧ B ∈ 𝐷) → (A𝑅B ↔ A(𝑅 ∩ (𝐶 × 𝐷))B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 4350 | . . 3 ⊢ (A(𝑅 ∩ (𝐶 × 𝐷))B ↔ (A ∈ 𝐶 ∧ B ∈ 𝐷 ∧ A𝑅B)) | |
2 | df-3an 886 | . . 3 ⊢ ((A ∈ 𝐶 ∧ B ∈ 𝐷 ∧ A𝑅B) ↔ ((A ∈ 𝐶 ∧ B ∈ 𝐷) ∧ A𝑅B)) | |
3 | 1, 2 | bitri 173 | . 2 ⊢ (A(𝑅 ∩ (𝐶 × 𝐷))B ↔ ((A ∈ 𝐶 ∧ B ∈ 𝐷) ∧ A𝑅B)) |
4 | 3 | baibr 828 | 1 ⊢ ((A ∈ 𝐶 ∧ B ∈ 𝐷) → (A𝑅B ↔ A(𝑅 ∩ (𝐶 × 𝐷))B)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∧ w3a 884 ∈ wcel 1390 ∩ cin 2910 class class class wbr 3755 × cxp 4286 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-xp 4294 |
This theorem is referenced by: poinxp 4352 soinxp 4353 seinxp 4354 isores2 5396 ltpiord 6303 |
Copyright terms: Public domain | W3C validator |