![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > baibr | GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (φ ↔ (ψ ∧ χ)) |
Ref | Expression |
---|---|
baibr | ⊢ (ψ → (χ ↔ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . . 3 ⊢ (φ ↔ (ψ ∧ χ)) | |
2 | 1 | baib 827 | . 2 ⊢ (ψ → (φ ↔ χ)) |
3 | 2 | bicomd 129 | 1 ⊢ (ψ → (χ ↔ φ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: rbaibr 830 pm5.44 833 exmoeu2 1945 ssnelpss 3283 r19.9rmv 3307 dfopg 3538 brinxp 4351 elioo5 8572 |
Copyright terms: Public domain | W3C validator |