ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibr GIF version

Theorem baibr 828
Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
Hypothesis
Ref Expression
baib.1 (φ ↔ (ψ χ))
Assertion
Ref Expression
baibr (ψ → (χφ))

Proof of Theorem baibr
StepHypRef Expression
1 baib.1 . . 3 (φ ↔ (ψ χ))
21baib 827 . 2 (ψ → (φχ))
32bicomd 129 1 (ψ → (χφ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  rbaibr  830  pm5.44  833  exmoeu2  1945  ssnelpss  3283  r19.9rmv  3307  dfopg  3538  brinxp  4351  elioo5  8572
  Copyright terms: Public domain W3C validator