ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomi GIF version

Theorem brdomi 6230
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brdomi (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 6226 . . . 4 Rel ≼
21brrelex2i 4385 . . 3 (𝐴𝐵𝐵 ∈ V)
3 brdomg 6229 . . 3 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
54ibi 165 1 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wex 1381  wcel 1393  Vcvv 2557   class class class wbr 3764  1-1wf1 4899  cdom 6220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-fn 4905  df-f 4906  df-f1 4907  df-dom 6223
This theorem is referenced by:  2dom  6285  xpdom2  6305
  Copyright terms: Public domain W3C validator