ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-dom GIF version

Definition df-dom 6159
Description: Define the dominance relation. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 6167 and domen 6168. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-dom ≼ = {⟨x, y⟩ ∣ f f:x1-1y}
Distinct variable group:   x,y,f

Detailed syntax breakdown of Definition df-dom
StepHypRef Expression
1 cdom 6156 . 2 class
2 vx . . . . . 6 setvar x
32cv 1241 . . . . 5 class x
4 vy . . . . . 6 setvar y
54cv 1241 . . . . 5 class y
6 vf . . . . . 6 setvar f
76cv 1241 . . . . 5 class f
83, 5, 7wf1 4842 . . . 4 wff f:x1-1y
98, 6wex 1378 . . 3 wff f f:x1-1y
109, 2, 4copab 3808 . 2 class {⟨x, y⟩ ∣ f f:x1-1y}
111, 10wceq 1242 1 wff ≼ = {⟨x, y⟩ ∣ f f:x1-1y}
Colors of variables: wff set class
This definition is referenced by:  reldom  6162  brdomg  6165  enssdom  6178
  Copyright terms: Public domain W3C validator