ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpsnen Unicode version

Theorem xpsnen 6295
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpsnen.1  |-  A  e. 
_V
xpsnen.2  |-  B  e. 
_V
Assertion
Ref Expression
xpsnen  |-  ( A  X.  { B }
)  ~~  A

Proof of Theorem xpsnen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsnen.1 . . 3  |-  A  e. 
_V
2 xpsnen.2 . . . 4  |-  B  e. 
_V
32snex 3937 . . 3  |-  { B }  e.  _V
41, 3xpex 4453 . 2  |-  ( A  X.  { B }
)  e.  _V
5 elxp 4362 . . 3  |-  ( y  e.  ( A  X.  { B } )  <->  E. x E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) ) )
6 inteq 3618 . . . . . . . 8  |-  ( y  =  <. x ,  z
>.  ->  |^| y  =  |^| <.
x ,  z >.
)
76inteqd 3620 . . . . . . 7  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  |^| |^|
<. x ,  z >.
)
8 vex 2560 . . . . . . . 8  |-  x  e. 
_V
9 vex 2560 . . . . . . . 8  |-  z  e. 
_V
108, 9op1stb 4209 . . . . . . 7  |-  |^| |^| <. x ,  z >.  =  x
117, 10syl6eq 2088 . . . . . 6  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  =  x )
1211, 8syl6eqel 2128 . . . . 5  |-  ( y  =  <. x ,  z
>.  ->  |^| |^| y  e.  _V )
1312adantr 261 . . . 4  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
1413exlimivv 1776 . . 3  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  ->  |^| |^| y  e.  _V )
155, 14sylbi 114 . 2  |-  ( y  e.  ( A  X.  { B } )  ->  |^| |^| y  e.  _V )
168, 2opex 3966 . . 3  |-  <. x ,  B >.  e.  _V
1716a1i 9 . 2  |-  ( x  e.  A  ->  <. x ,  B >.  e.  _V )
18 eqvisset 2565 . . . . 5  |-  ( x  =  |^| |^| y  ->  |^| |^| y  e.  _V )
19 ancom 253 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( z  e.  { B }  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
20 anass 381 . . . . . . . . . . 11  |-  ( ( ( y  =  <. x ,  z >.  /\  x  e.  A )  /\  z  e.  { B } )  <-> 
( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) ) )
21 velsn 3392 . . . . . . . . . . . 12  |-  ( z  e.  { B }  <->  z  =  B )
2221anbi1i 431 . . . . . . . . . . 11  |-  ( ( z  e.  { B }  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2319, 20, 223bitr3i 199 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  ( z  =  B  /\  (
y  =  <. x ,  z >.  /\  x  e.  A ) ) )
2423exbii 1496 . . . . . . . . 9  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  E. z
( z  =  B  /\  ( y  = 
<. x ,  z >.  /\  x  e.  A
) ) )
25 opeq2 3550 . . . . . . . . . . . 12  |-  ( z  =  B  ->  <. x ,  z >.  =  <. x ,  B >. )
2625eqeq2d 2051 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
y  =  <. x ,  z >.  <->  y  =  <. x ,  B >. ) )
2726anbi1d 438 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( y  =  <. x ,  z >.  /\  x  e.  A )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
282, 27ceqsexv 2593 . . . . . . . . 9  |-  ( E. z ( z  =  B  /\  ( y  =  <. x ,  z
>.  /\  x  e.  A
) )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
29 inteq 3618 . . . . . . . . . . . . . 14  |-  ( y  =  <. x ,  B >.  ->  |^| y  =  |^| <.
x ,  B >. )
3029inteqd 3620 . . . . . . . . . . . . 13  |-  ( y  =  <. x ,  B >.  ->  |^| |^| y  =  |^| |^|
<. x ,  B >. )
318, 2op1stb 4209 . . . . . . . . . . . . 13  |-  |^| |^| <. x ,  B >.  =  x
3230, 31syl6req 2089 . . . . . . . . . . . 12  |-  ( y  =  <. x ,  B >.  ->  x  =  |^| |^| y )
3332pm4.71ri 372 . . . . . . . . . . 11  |-  ( y  =  <. x ,  B >.  <-> 
( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. ) )
3433anbi1i 431 . . . . . . . . . 10  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
x  =  |^| |^| y  /\  y  =  <. x ,  B >. )  /\  x  e.  A
) )
35 anass 381 . . . . . . . . . 10  |-  ( ( ( x  =  |^| |^| y  /\  y  = 
<. x ,  B >. )  /\  x  e.  A
)  <->  ( x  = 
|^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3634, 35bitri 173 . . . . . . . . 9  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3724, 28, 363bitri 195 . . . . . . . 8  |-  ( E. z ( y  = 
<. x ,  z >.  /\  ( x  e.  A  /\  z  e.  { B } ) )  <->  ( x  =  |^| |^| y  /\  (
y  =  <. x ,  B >.  /\  x  e.  A ) ) )
3837exbii 1496 . . . . . . 7  |-  ( E. x E. z ( y  =  <. x ,  z >.  /\  (
x  e.  A  /\  z  e.  { B } ) )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
395, 38bitri 173 . . . . . 6  |-  ( y  e.  ( A  X.  { B } )  <->  E. x
( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A
) ) )
40 opeq1 3549 . . . . . . . . 9  |-  ( x  =  |^| |^| y  -> 
<. x ,  B >.  = 
<. |^| |^| y ,  B >. )
4140eqeq2d 2051 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( y  =  <. x ,  B >.  <->  y  =  <. |^| |^| y ,  B >. ) )
42 eleq1 2100 . . . . . . . 8  |-  ( x  =  |^| |^| y  ->  ( x  e.  A  <->  |^|
|^| y  e.  A
) )
4341, 42anbi12d 442 . . . . . . 7  |-  ( x  =  |^| |^| y  ->  ( ( y  = 
<. x ,  B >.  /\  x  e.  A )  <-> 
( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4443ceqsexgv 2673 . . . . . 6  |-  ( |^| |^| y  e.  _V  ->  ( E. x ( x  =  |^| |^| y  /\  ( y  =  <. x ,  B >.  /\  x  e.  A ) )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4539, 44syl5bb 181 . . . . 5  |-  ( |^| |^| y  e.  _V  ->  ( y  e.  ( A  X.  { B }
)  <->  ( y  = 
<. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4618, 45syl 14 . . . 4  |-  ( x  =  |^| |^| y  ->  ( y  e.  ( A  X.  { B } )  <->  ( y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A
) ) )
4746pm5.32ri 428 . . 3  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
4832adantr 261 . . . . 5  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  ->  x  =  |^| |^| y )
4948pm4.71i 371 . . . 4  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( (
y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y ) )
5043pm5.32ri 428 . . . 4  |-  ( ( ( y  =  <. x ,  B >.  /\  x  e.  A )  /\  x  =  |^| |^| y )  <->  ( (
y  =  <. |^| |^| y ,  B >.  /\  |^| |^| y  e.  A )  /\  x  =  |^| |^| y ) )
5149, 50bitr2i 174 . . 3  |-  ( ( ( y  =  <. |^|
|^| y ,  B >.  /\  |^| |^| y  e.  A
)  /\  x  =  |^| |^| y )  <->  ( y  =  <. x ,  B >.  /\  x  e.  A
) )
52 ancom 253 . . 3  |-  ( ( y  =  <. x ,  B >.  /\  x  e.  A )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
5347, 51, 523bitri 195 . 2  |-  ( ( y  e.  ( A  X.  { B }
)  /\  x  =  |^| |^| y )  <->  ( x  e.  A  /\  y  =  <. x ,  B >. ) )
544, 1, 15, 17, 53en2i 6250 1  |-  ( A  X.  { B }
)  ~~  A
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   {csn 3375   <.cop 3378   |^|cint 3615   class class class wbr 3764    X. cxp 4343    ~~ cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-en 6222
This theorem is referenced by:  xpsneng  6296  endisj  6298
  Copyright terms: Public domain W3C validator